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Abstract 

Purpose To evaluate machine learning–based survival model roles in predicting rehospitalization after hip fractures 
to improve reduce the burden on the healthcare system.

Methods This retrospective cohort study examined 718 patients with hip fractures hospitalized at the Daejeon Eulji 
Medical Center between January 2020 and June 2022. Demographic and clinical variables, and rehospitalization data 
were collected at 6 weeks and 3, 6, 12, and 24 months. Cox proportional hazards (CoxPH), random survival forest (RSF), 
gradient boosting (GB), and fast survival support vector machine (SVM) models were developed.

Model performance was assessed using the concordance index (c-index), area under the curve (AUC), and Kaplan–
Meier survival curves. Feature importance was analyzed using permutation importance, with the best model selected 
based on overall performance.

Results Hyperparameter tuning optimized the models. The GB model had the highest mean AUC of 0.868, fol-
lowed by the RSF (0.785), SVM (0.763), and CoxPH (0.736) models. Feature importance analysis highlighted femoral 
neck T-score, age, body mass index, operation time, compression fracture, and total calcium as significant predictors. 
Feature selection improved the c-index for the RSF model from 0.742 to 0.874 and CoxPH model from 0.717 to 0.915; 
the GB and SVM models exhibited a c-index decline post-feature selection. The GB and RSF models predicted lower 
rehospitalization probabilities than Kaplan–Meier estimates; the CoxPH model’s predictions were closely aligned 
with the observed data.

Conclusions The effect of feature selection on model performance highlights the need for comprehensive variable 
selection and model evaluation strategies to improve predictive accuracy.
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Introduction
Hip fractures in older adults present significant chal-
lenges for healthcare systems by increasing morbid-
ity, mortality, and rehospitalization rates. With the 
aging global population, the incidence of hip fractures 
is increasing, placing additional pressure on healthcare 
resources. Rehospitalization not only hinders patient 
recovery but also strains the financial sustainability of 
healthcare systems, underscoring the need for accurate 
predictive models to guide targeted interventions [1, 2]. 
Therefore, finding out features affecting rehabilitation 
rate and modeling prediction is important.

Traditional prognostic methods for predicting reha-
bilitation rate, while important, often lack the complex-
ity to accurately predict rehospitalization risks owing to 
limitations in handling censored data and dynamic risk 
factors [3]. In contrast, machine learning (ML)–based 
survival models, such as gradient boosting (GB), fast sur-
vival support vector machines (SVM), random survival 
forest (RSF), and Cox proportional hazards (CoxPH), 
manage censored data and provide precise time-to-event 
predictions. These models offer a deeper understanding 
of rehospitalization risks and enhance their clinical rel-
evance [4–6].

There are few strengths for using ML models over deep 
learning. First, deep learning models typically require 
large-scale datasets to avoid overfitting, particularly in 
high-dimensional low-sample-size (HDLSS) settings 
common in clinical research. Training deep networks 
with HDLSS data often leads to unstable gradient esti-
mates and model overfitting, necessitating additional 
feature selection or dimensionality reduction techniques, 
which can undermine the original motivation of using 
deep models [7]. Furthermore, deep neural networks, 
especially fully connected architectures, lack transpar-
ency and make it difficult to interpret individual predic-
tor contributions—an important limitation in survival 
analysis where identifying key prognostic factors is as 
critical as risk prediction. In contrast, CoxPH and RSF 
provide interpretable outputs, and GB and SVM models 
offer stable performance with limited data and clearer 
variable importance. Given the moderate sample size and 
the need for clinically interpretable models, traditional 
survival modeling methods were more suitable for this 
study’s objectives [8].

This study aimed to compare the effectiveness of these 
advanced ML models in predicting rehospitalization of 
older hip fracture patients. By identifying the key factors 
contributing to rehospitalization, the goal was to develop 
predictive protocols that can improve patient outcomes 
and reduce the strain of recurrent hospitalizations on 
the healthcare system. This will not only enhance patient 
outcomes but also alleviate the broader economic and 

operational strain imposed on healthcare systems by 
recurrent hospitalizations [9]. This represents a pivotal 
step forward in improving care for older patients with 
hip fractures and provides a blueprint for enhancing 
the efficacy of healthcare delivery in the face of an aging 
population.

Methods
Study Design and Participants
This retrospective cohort study was conducted at the 
Daejeon Eulji Medical Center, South Korea, focusing on 
patients hospitalized for hip fractures between January 
2020 and June 2022. In total, 1,046 patients were initially 
included in this study. Of the initial patients, 718 were 
included in the final analysis after excluding those with 
missing values in key clinical variables. Cohort data were 
collected every 6 weeks and 3, 6, 12, and 24 months. The 
follow-up intervals (6 weeks, 3, 6, 12, and 24 months) 
were selected based on common clinical milestones fol-
lowing hip fracture surgery. These time points align with 
periods of elevated risk for postoperative complications, 
re-fracture, and rehabilitation-related readmissions, as 
supported by previous studies[10]. Rehospitalization 
dates were also recorded to develop and validate a pre-
dictive model for the rehospitalization of hip fracture 
patients during 24 months using real-world data (Fig. 1).

Data collection
Data collected included demographic information, clini-
cal characteristics, and follow-up outcomes. The vari-
ables analyzed were sex; age; body mass index (BMI); 
blood urea nitrogen (BUN); fracture type; concomitant 
fracture; history of hip fracture; American Society of 
Anesthesiologists (ASA) score; number of compression 
fractures; total calcium; type of surgery; lumbar spine/T-
score; femoral neck/T-score; post-surgery osteoporosis 
treatment; and presence of disorders such as neuropsy-
chiatric, cardiovascular, endocrine, respiratory, renal, 
ophthalmic, spinal, gastrointestinal, hematologic, and 
connective tissue [11–25].

Data synthesis and preprocessing
To augment the dataset and generate robust predictive 
models while ensuring patient data privacy, a synthetic 
dataset was generated based on the original cohort data. 
This synthetic dataset replicates the statistical properties 
of the original dataset without representing real patients. 
To assess the synthetic data’s validity, we compared key 
variable distributions between the original and synthetic 
datasets using the Kolmogorov–Smirnov (KS) test and 
histogram overlays. BMI, femoral neck T-score, and 
lumbar spine T-score showed no significant differences 
(p > 0.7), indicating high similarity. However, the KS test 
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revealed a significant difference in age distribution (Sup-
plementary Figure S1 and Supplementary Table  S1). 
Continuous variables such as age, BMI, BUN, total cal-
cium, operation time, lumbar spine T-score, and femoral 
neck  T-score were normalized using minimum–maxi-
mum scaling. Categorical variables such as sex, fracture 
type, ASA score, and presence of disorders were encoded 
using standard scaling techniques.

Survival analysis
Survival analysis was conducted to estimate the duration 
between hip fracture and rehospitalization [10]. Cohort 
data were collected every 6 weeks and at 3, 6, 12, and 24 
months. The duration from discharge to rehospitaliza-
tion was defined as the event period. If rehospitalization 
did not occur, the duration was considered as the period 
until the end of the study.

Model development
The dataset was randomly divided into training (80%) and 
test (20%) sets. We employed the following ML models 
to develop a predictive model: CoxPH, RSF, GB, and fast 
survival SVM. Hyperparameter tuning was conducted 
using three-fold cross-validation with 50 repetitions on 
the training set to ensure robust performance estimates 
and minimize overfitting [26].

• CoxPH: A widely used semiparametric model that 
estimates the effect of variables on the risk of an 
event without specifying the baseline hazard func-
tion. This is particularly useful when evaluating the 
impact of covariates on survival outcomes [27–29].

• RSF: An ensemble method tailored for survival 
data that builds multiple decision trees using boot-
strapped samples and random subsets of variables. It 
is suitable for right-censored data and captures com-
plex variable interactions to improve survival predic-
tions [30, 31].

• GB: As a powerful tool for predicting survival, this 
method extends gradient boosting for time-to-event 
data by sequentially constructing decision trees that 
minimize prediction errors, effectively capturing 
non-linear relationships [32, 33].

• Fast survival SVM: This model applies SVM princi-
ples to survival data, optimizing a hyperplane that 
separates data based on survival times while account-
ing for censored observations. It is particularly useful 
for high-dimensional datasets [34].

Model selection and performance evaluation 
with statistical analysis
Model selection was based on multiple performance 
metrics, including the concordance index (C-index), area 

Fig. 1 Workflow of a Retrospective Cohort Study for Predicting Outcomes of Hip Fracture Patients
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under the curve (AUC), and predicted survival curves 
compared with the Kaplan–Meier (KM) survival curve. 
Statistical analyses were conducted using the scikit-sur-
vival and scikit-learn libraries. The optimal model was 
selected based on the highest cumulative performance 
of metrics. In addition to conventional survival metrics 
such as AUC and c-index, we also evaluated each model’s 
binary classification performance at a 12-month thresh-
old using confusion matrices, sensitivity, specificity, pre-
cision, and F1-score.

Explainability and feature importance
To enhance interpretability, explainability was addressed 
using permutation importance [35], which identified the 
contribution of each feature to the model’s predictive 
performance. This approach highlights the most influ-
ential factors in predicting rehospitalization. For the GB 
model, feature importance was also measured.

Ethics committee approval statement
This study was reviewed and approved by the Daejeon 
Eulji Medical Center Institutional Review Board (IRB 
number: EMC IRB 2023–01–015–003) and adheres 
to the tenets of the Declaration of Helsinki. Written 

informed consent was obtained from all subjects before 
being included.

Results
Study flow and cohort data
Data from 1,046 patients were initially collected, includ-
ing 25 features. Based on correlation coefficients, fea-
tures > 0.6 were excluded to reduce multicollinearity 
and improve model stability, and after excluding highly 
correlated variables (r > 0.6) and those with excessive 
missing values, 19 variables were retained (Fig.  2). A 
threshold of 0.6 for the Pearson correlation coefficient 
was selected to identify moderate to strong multicollin-
earity, following recommendations in the literature [36]. 
Features were categorized as either continuous or cat-
egorical. The femoral neck  T-score had the highest null 
count (n = 325) and was excluded, ultimately resulting in 
data from 718 patients for the model training. Although 
this exclusion was necessary to maintain data integrity, it 
may have introduced selection bias and reduced sample 
representativeness—a limitation addressed in the Discus-
sion section.

Descriptive statistics (mean, standard deviation, maxi-
mum, and minimum) for the continuous variables—age, 

Fig. 2 Correlation Coefficients Among Selected Features
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BMI, BUN, compression fracture number, total calcium, 
operation time, lumbar spine-T-score, and femoral neck-
T-score—are presented in Table  1. The demographic of 
718 patients are followings: female sex (n = 502), a typi-
cal type of hip fracture (n = 686), no history of hip frac-
ture (n = 659), and internal fixation surgery (n = 369) 
were the most common categorical features  (Table  2). 
The presence of eight different disorder types was ana-
lyzed; cardiovascular disorders were most common (n 
= 494), whereas renal disorders were the rarest (n = 65) 
(for demographic of 1,046 patients see Supplementary 
Table S2, S3).

Hyperparameter tuning
Hyperparameter tuning was conducted to optimize ML 
models, and the results are presented in Table  3. This 
process involved adjusting various hyperparameters to 
enhance the performance of each model. The c-index, 
calculated as the mean of three-fold cross-validation with 
50 repetitions, was used to evaluate model performance.

For the GB model, the optimal values were a learning 
rate of 0.1, maximum depth of 2, and minimum sample 
per leaf of 5. For the RSF model, the optimal parameters 
were a maximum depth of 2, minimum samples per leaf 
of 10, and minimum samples per split of 10. The CoxPH 
model was optimized with an alpha value of 256, whereas 
the Fast Survival SVM model was tuned with an alpha 
value of 0.00024414. The optimal values were determined 
to maximize the predictive performance of each model 
(Table 3).

Time‑dependent AUC for Different Models
The models were evaluated based on their cumulative 
AUC over a 472-day period, providing insight into their 
time-dependent accuracy in predicting outcomes. Fig-
ure 3 shows the cumulative AUC of each model. The GB 
model consistently outperformed the other models with a 
mean AUC of 0.868. It maintained a high AUC through-
out the study period, demonstrating its reliability in 

predicting outcomes over time. The RSF model followed 
with a mean AUC of 0.785, showing steady performance, 
but with more fluctuations than the GB model. The Fast 
Survival SVM model, with a mean AUC of 0.763, showed 
a performance comparable with that of the RSF model 
but slightly lower, indicating its moderate predictive abil-
ity. In contrast, the CoxPH model had the lowest mean 
AUC of 0.736, with significant variability throughout the 
follow-up period, suggesting poor reliability in maintain-
ing predictive accuracy over time as the other models 
(Fig. 3).

Mean Permutation Importance and SHAP values 
in Predictive Models
Feature importance analysis across the GB, RSF, and 
CoxPH models revealed significant insights into the 
predictors of patient outcomes. Notably, the femoral 
neck  T-score consistently emerged as a key predictor 
across all models, highlighting its substantial influence 
on the predictive performance of these models (Fig. 4).

The importance of other variables varied across the 
models; however, several features consistently demon-
strated notable significance.

• Age: This ranked high across multiple models, 
emphasizing its pivotal role in predicting patient out-
comes.

• BMI: Particularly significant in the CoxPH model, 
highlighting its relevance as a predictor. This finding 
aligns with existing literature that links BMI to vari-
ous health outcomes [37].

• Operation time: Highlighted in both the GB and RSF 
models, with the duration of the surgical procedure 
emerged as an important predictor of patient recov-
ery and long-term outcomes [13].

• Compression fracture: Notably significant in the GB 
model, where its presence is identified as a critical 
factor in patient prognosis.

Table 1 Descriptive statistics of the continuous variables

BMI body mass index; BUN blood urea nitrogen

Variables Mean Standard deviation Minimum Maximum

Age 78.7200557 9.6608262 50 103

BMI 22.0647374 3.5281853 12.02 35.37

BUN 16.9574275 9.5637096 5 140

Number of compression fracture 0.2691218 0.4441329 0 6

Total calcium 9.14863509 4.3514252 0.1 92

Operation time 59.0334262 42.2271403 10 600

Lumbar spine T-score −2.3640961 1.8542567 −18 5.8

Femur neck T-score −2.8720474 1.8795033 −43 2.47
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• Total calcium: Identified as important in both the GB 
and RSF models. Total calcium levels are relevant for 
predicting outcomes, likely because of their role in 
bone health and recovery [38].

Additional variables such as connective tissue disorder, 
neuro-psychiatric disorder, endocrine disorder, and sur-
gery type also contributed to the predictive performance, 

although with varying degrees of importance across dif-
ferent models. To enhance interpretability beyond tra-
ditional permutation-based methods, we employed 
SHapley Additive exPlanations (SHAP) for the GB model. 
Figure 5 presents a SHAP summary plot, illustrating the 
magnitude and direction of each feature’s contribution 
to model predictions across all patients. Among the top 
predictors, higher age and lower BMI values were asso-
ciated with an increased risk of rehospitalization. Lower 
femoral neck T-scores, reflecting poorer bone density, 
also contributed strongly to higher predicted risk. The 
presence of hip fracture history showed a consistently 
positive influence on the prediction outcome, indicating 
higher risk when such history was present. Additionally, 
longer operative time and lower lumbar spine T-scores 
showed moderate but variable influence, whereas fea-
tures such as pre-surgery walking ability and BUN levels 
had limited but directionally meaningful impact. Inter-
estingly, higher total calcium levels were associated with 
increased rehospitalization risk in our SHAP analysis.

Model Performance with feature selection
Table  4 compares the C-index of each model when 
trained with the full set of features versus only those fea-
tures with positive permutation importance. This analysis 
evaluated the impact of feature selection on model per-
formance. For the GB model, the C-index decreased from 
0.84277 to 0.67066 after feature selection, indicating a 
reduction in the predictive performance when only fea-
tures with positive importance were used.

By contrast, the RSF model showed a significant 
improvement, with the C-index increasing from 0.74214 
to 0.87421 after feature selection, suggesting better per-
formance with a more focused feature set. The CoxPH 
survival analysis model also showed a substantial 
improvement, with the C-index increasing from 0.71698 
to 0.91509 after feature selection. For the fast survival 
SVM model, the C-index decreased slightly from 0.77358 

Table 2 Descriptive statistics of the categorical variables

Variables Total

N %

Total (n = 718) 718 100
Sex
 Male 216 30.0

 Female 502 70.0

History of previous hip fracture
 No 659 91.8

 Yes 59 8.2

Fracture type
 Typical 686 95.5

 Atypical 31 4.5

 Both 1 0.0

Surgery type
 Internal fixation 369 51.4

 Artificial joint 349 48.6

Neuro‑psychiatric disorders
 No 439 61.1

 Yes 279 38.9

Cardiovascular disorders
 No 224 31.2

 Yes 494 68.8

Endocrine disorders
 No 409 57.0

 Yes 309 43.0

Respiratory disorders
 No 636 88.6

 Yes 82 11.4

Spinal disorders
 No 567 79.0

 Yes 151 21.0

Gastrointestinal disorders
 No 624 86.9

 Yes 94 13.0

Hematologic disorders
 No 621 86.5

 Yes 97 13.5

Renal disorders
 No 647 90.1

 Yes 71 9.9

Table 3 Results of hyperparameter tuning

RSF random survival forest, CoxPH Cox proportional hazards; SVM fast survival 
support vector machine

Model Hyperparameter Optimal value

Gradient Boosting learning rate 0.1

max_depth 2

min_sample leaf 5

RSF max_depth 2

min_sample leaf 10

min_sample split 10

CoxPH alpha 256

Fast Survival SVM alpha 0.00024414
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to 0.73899 after feature selection, reflecting a marginal 
reduction in the predictive performance (Table 4).

Survival curves
Figure  6 shows the KM curve in black as a reference, 
while the predicted survival curves from the GB, RSF, 
and CoxPH models are shown in red. The GB model pre-
dicted a lower probability of rehospitalization than the 
KM curve, particularly after the first 100 days. Similarly, 
the RSF model also predicted a lower risk, closely follow-
ing the GB line until approximately 300 days, where it 
began to diverge. Conversely, the CoxPH model’s predic-
tions closely aligned with the KM estimate, indicating a 
more conservative and accurate prediction.

Overall, the GB and RSF models showed lower rehos-
pitalization probabilities than the KM estimate, with the 
GB model diverging earlier. However, the CoxPH model’s 
predictions remained closely aligned with the KM curve, 
reflecting a more conservative and accurate approach.

Binary classification evaluation
To further assess the clinical relevance of the models, we 
evaluated their predictive performance based on binary 
classification of 12-month rehospitalization using the 
average predicted survival probabilities at day 365. Based 
on each model’s average, patients were classified as high 
risk for rehospitalization if their predicted survival prob-
ability at 365 days was below 0.875 for GB, 0.888 for RSF, 
or 0.916 for CoxPH.

Under this classification approach, all three models cor-
rectly identified all 34 actual rehospitalizations within 12 
months (sensitivity = 1.00). However, precision and spec-
ificity varied owing to differences in false positive rates. 
The GB model yielded a specificity of 0.92 and a precision 

of 0.382, while the RSF achieved 0.931 and 0.420, respec-
tively. The CoxPH model demonstrated the best over-
all performance, with a specificity of 0.962, precision of 
0.567, and the highest F1-score of 0.723. (Table 5).

These results highlight the trade-off between sensitiv-
ity and specificity when using survival probabilities for 
binary risk classification, with the CoxPH model pro-
viding more balanced predictive performance in this 
context.

Discussion
This study predicted the rehospitalization of patients 
with hip fracture using a dataset from 718 patients 
treated between January 2020 and June 2022. Although 
the KS test indicated a significant difference in age dis-
tribution between the original and synthetic datasets (p < 
0.001), the reshaped distribution in the synthetic data 
resulted in a more binary-like structure. This transforma-
tion may have facilitated clearer decision boundaries in 
model training and improved classification performance. 
Thus, while the deviation in age distribution was statis-
tically significant, it may have contributed positively to 
model generalization and robustness (Supplementary 
Figure S1 and Table S1) [39].

Our study focused on time-to-rehospitalization as a 
single clinical event, without separately modeling com-
peting risks such as death. Therefore, we applied the 
standard survival analysis ML models, which are suitable 
for right-censored survival data involving a single type 
of event. While RSF can be extended to accommodate 
competing risks through the RSF for Competing Risks 
(RSFCR) framework, this approach is suitable only when 
distinct, mutually exclusive outcomes are explicitly mod-
eled [40]. As our outcome of interest did not involve such 

Fig. 3 Cumulative AUC Comparison of Different Models Over Time. AUC, area under the curve
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competing events, the use of RSF was considered appro-
priate for this analysis [41].

Overall, the AUC and C-index indicated that the GB 
model was most effective in predicting outcomes, fol-
lowed by the RSF and fast survival SVM models, with the 
CoxPH model showing the lowest performance. How-
ever, the GB model showed the most significant diver-
gence when considering the survival curve of each model 
compared with the KM standard. The CoxPH model pro-
vided predictions closely aligned with the KM estimate, 
suggesting a more conservative prediction. Addition-
ally, CoxPH had the highest specificity, precision, and F1 
score for 12-month rehospitalization, indicating superior 
performance within a defined period. These differences 
in model performance evaluations based on different 
standards highlight the varying predictive capabilities 
and tendencies of each model, offering valuable insights 
into selecting appropriate models for time-dependent 
clinical predictions of rehospitalization risk [42].

The alignment of the C-index and AUC across ML 
models, despite differences in survival curves, can be 
explained as follows: Both the C-index and AUC meas-
ure a model’s ability to discriminate between higher- 
and lower-risk patients, focusing on the overall ranking 
across the dataset. However, the survival curves evalu-
ate the model’s performance over time and assess its 
accuracy in predicting the timing of events. Therefore, a 
model with a high C-index or AUC may still misestimate 
survival if it does not accurately predict event timing. 
This contrast highlights the need for multiple evaluation 
metrics. While the C-index and AUC focus on risk dis-
crimination, survival curves are crucial for time-based 
predictions. The choice of metrics depends on whether 
the priority is to identify high-risk patients or predict the 
timing of events [43, 44].

The permutation importance of each model suggests 
that the femoral neck T-score is a primary factor in rehos-
pitalization prediction for patients with hip fracture. Low 
T-scores, indicative of osteoporosis, are associated with 
a higher risk of postsurgical complications such as non-
union, femoral head necrosis, and increased incidence of 
falls, all of which contribute to higher rates of rehospitali-
zation. Studies have shown that patients with poor bone 
quality often experience prolonged recovery times and 
complications such as implant failure or surgical revision, 

Fig. 4 Feature Importance Comparisons Across Models (Gradient 
Boosting, Random Survival Forest, Cox Proportional Hazards) | A. 
Gradient Boosting: Mean Permutation Importance | B. Gradient 
Boosting: Direct Feature Importance | C. Random Survival Forest: 
Mean Permutation Importance | D. Cox Proportional Hazards: Mean 
Permutation Importance | E. Fast Survival Support Vector Machines 
(SVM): Mean Permutation Importance

◂
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which increases the likelihood of rehospitalization [45, 
46]. Therefore, femoral neck T-score should be a primary 
consideration in managing patients with hip fracture, as 
it is a key predictor of both immediate post-surgical out-
comes and long-term risk of rehospitalization. Moreover, 
the distribution of SHAP values highlights both the aver-
age importance of each variable and the heterogeneity 
of its impact across individual predictions. This analysis 
provides an interpretable, patient-level perspective on 
model behavior, supporting clinical insight and transpar-
ency in the predictive process.

Model features and clinical usage
However, several other features differed significantly. This 
result reflects the multifaceted nature of determining the 
most impactful predictors and underscores the necessity 
for a comprehensive approach to variable selection and 

model evaluation. Moreover, this study illustrated that 
feature selection can significantly affect the performance 
of survival analysis models. Notably, the CoxPH and RSF 
models showed considerable improvements in their pre-
dictive capabilities when trained on a refined set of fea-
tures with positive importance. In contrast, the GB and 
Fast Survival SVM models exhibited decreased perfor-
mance, highlighting the need for a comprehensive feature 
set to achieve optimal accuracy [36].

The GB and Fast Survival SVM models rely on the 
identification of complex patterns in the data, which 
makes them sensitive to feature selection. When relevant 
but subtle features are removed, these models struggle to 
capture intricate relationships, leading to poor perfor-
mance. They generally perform better with a larger set of 
features, although some were less important. In contrast, 
simpler models, such as CoxPH and RSF, handle reduced 
feature sets better. CoxPH survival analysis benefits from 
fewer features by avoiding overfitting, whereas the RSF 
ensemble approach allows it to handle fewer or noisy 
features effectively. Thus, the decline in GB and Fast 
Survival SVM performance after feature selection likely 
stems from their dependence on capturing complex, 
high-dimensional interactions, whereas the CoxPH and 
RSF models thrive with a more streamlined input [29, 31, 
33–35, 47].

From a clinical standpoint, the divergent performance 
of these models following feature selection has important 
implications in orthopedic care. For example, in high-
volume tertiary hospitals managing older patients with 

Fig. 5 SHAP summary plot for the gradient boosting model

Table 4 Cox index of each model trained before and after 
feature selection

RSF random survival forest; CoxPH Cox proportional hazards; SVM support vector 
machine

Model Cox index (trained 
with full features)

Cox index (trained on 
only positive importance 
features)

Gradient Boosting 0.84277 0.67066

RSF 0.74214 0.87421

CoxPH 0.71698 0.91509

Fast Survival SVM 0.77358 0.73899
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Fig. 6 Survival curve comparisons for rehospitalization prediction | A. Gradient Boosting | B. Random Survival Forest | C. Cox Proportional Hazards
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hip fractures, comprehensive data such as femoral neck 
T-score, operative time, BMI, and preoperative mobility 
status are routinely collected and digitized. In these set-
tings, complex models like GB can effectively utilize the 
diverse available information to detect nonlinear interac-
tions—such as the compounded risk of early rehospitali-
zation in patients with both low T-scores and prolonged 
surgery duration. These models are particularly valu-
able in developing personalized care plans or identifying 
patients who may benefit from early rehabilitation inter-
ventions or pharmacological optimization.

By contrast, in smaller orthopedic centers or during the 
early triage phase—where only basic demographic data 
(e.g., age, sex), fracture type, and ASA classification are 
readily accessible—simpler models like CoxPH or RSF 
provide more robust and interpretable predictions. For 
instance, those models may help quickly identify high-
risk patients based on a small number of core features 
without relying on more granular lab. Moreover, these 
models are less prone to overfitting when used in lim-
ited-data environments, making them practical for real-
time clinical decision-making in resource-constrained 
settings.

Thus, the selection of a survival model should be 
aligned with statistical performance and the clinical 
workflow and data infrastructure. GB may excel in fea-
ture-rich environments typical of academic centers, while 
CoxPH and RSF models offer resilience and interpretabil-
ity in lower-resource orthopedic settings. This flexibility 
supports context-specific model deployment, ultimately 
enhancing the translational utility of predictive modeling 
in orthopedic care.

Features affecting rehospitalization rate
Low BMI has been linked to poorer outcomes in older 
patients with hip fracture. Underweight individuals (BMI 
< 18.5) experience significantly higher mortality after hip 
fracture surgery than those of normal weight, whereas 
overweight patients often fare better (an “obesity para-
dox”) [48] . Mechanistically, a low BMI often reflects 
frailty with poor nutritional reserves and sarcopenia. 
Individuals who are malnourished have diminished 
energy and protein stores to support healing, leading to 
muscle wasting (sarcopenia), impaired immunity, and 

reduced strength for rehabilitation [49]. Consistent with 
this finding, malnutrition in patients with hip fracture 
is associated with increased mortality and loss of inde-
pendence, and low muscle mass has been shown to inde-
pendently predict worse functional recovery and higher 
one-year mortality . Consequently, low BMI serves as an 
indicator of vulnerability that predisposes these patients 
to complications and rehospitalization, supporting its 
inclusion as a predictor in survival models [50].

Operation time (operative duration) emerged as one 
of the key predictors of rehospitalization in our analysis. 
Prolonged surgery often reflects greater surgical com-
plexity, comorbid patient conditions, or intraoperative 
complications. These factors are known to increase the 
risk of postoperative complications such as surgical site 
infections, delirium, or cardiopulmonary events, all of 
which may lead to early readmission. Moreover, longer 
operation time can delay functional recovery and hinder 
participation in early rehabilitation, further increasing 
the risk of unfavorable outcomes [51]. This finding aligns 
with previous reports suggesting that extended surgi-
cal time is independently associated with higher rates 
of rehospitalization and adverse postoperative events in 
orthopedic patients. Longer surgeries may indicate more 
complex fractures or intraoperative difficulties, increas-
ing the risk of infection, delayed healing, and rehospitali-
zation [13].

In older patients with hip fracture, higher total calcium 
levels may reflect underlying hypercalcemia-causing dis-
orders (such as primary hyperparathyroidism or occult 
malignancy) that predispose to complications and hin-
der recovery [52]. Hypercalcemia can induce multisys-
tem disturbances—even mild elevations are associated 
with cognitive impairment, dehydration, and muscle 
weakness in older adults , while more severe hypercalce-
mia can trigger delirium and cardiac arrhythmias  [53]. 
These effects (e.g., confusion, neuromuscular weakness, 
renal impairment) can significantly impede postoperative 
rehabilitation and increase the risk of medical complica-
tions, thereby raising the likelihood of rehospitalization. 
Hypercalcemia in this setting has also been associated 
with higher mortality rates  [54]. Furthermore, hypercal-
cemia of malignancy often indicates advanced cancer and 
is itself linked to frequent hospital readmissions in this 

Table 5 Performance comparison of survival models for 12-month rehospitalization prediction based on day-365 survival probabilities

RSF random survival forest; CoxPH Cox proportional hazards; TP true positive; FP false positive; TN true negative; FN false negative

Model TP FP TN FN Sensitivity Specificity Precision F1‑score

Gradient Boosting 34 55 629 0 1.000 0.920 0.382 0.553

RSF 34 47 637 0 1.000 0.931 0.420 0.591

CoxPH 34 26 658 0 1.000 0.961 0.567 0.7223
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population . Overall, an elevated calcium level may serve 
as a marker for comorbid conditions—such as hyperpar-
athyroidism, malignancy, dehydration, or other metabolic 
derangements—that contribute to poorer postoperative 
outcomes and higher rehospitalization rates.

Limitations and Strengths
This study has some limitations. First, its retrospective 
design may introduce bias owing to inconsistent data 
collection and patient selection. Missing data, particu-
larly for key features such as the femoral neck  T-score, 
reduced the sample size and the exclusion of cases with 
missing femoral neck T-scores may have introduced 
selection bias, potentially limiting the generalizability 
of our findings. However, we minimized it by testing KS 
scores and histogram analysis. Future work should con-
sider imputation techniques to reduce data loss. Further-
more, the use of synthetic data raises concerns regarding 
model performance in real-world applications, as it may 
not fully replicate actual patient data. Its impact on the 
external validity of the model remains a limitation. The 
absence of validation using real-world external cohorts 
restricts the generalizability of the findings. Future 
research should aim to validate these models on external 
datasets and assess whether patterns learned from syn-
thetic data hold true in different clinical settings. Second, 
the single-center nature of this study limits its exter-
nal validity, as the findings may not be generalizable to 
other regions or healthcare systems. Moreover, detailed 
cause-of-rehospitalization data were not available for this 
retrospective cohort. Future research should involve a 
multicenter study that assesses the reasons for readmis-
sion and integrates them into the predictive model to 
enhance the generalizability of the findings. Third, more 
advanced models, such as deep learning–based tech-
niques, were not explored, which could further enhance 
the prediction accuracy. ML models were more fitted to 
this type of prediction while deep-learning can decrease 
the prediction rate due to overfitting.

Future studies should focus on multicenter data, 
advanced imputation methods, and the incorporation 
of more sophisticated models for better generaliza-
tion and accuracy. Furthermore, we acknowledge that 
calibration curves, decision curve analysis (DCA), and 
precision-recall (PR) curves were not included in this 
version of the study. Although this study provides a 
robust framework for predictive modeling in the con-
text of rehospitalization among patients with hip frac-
ture, we have identified this as a limitation and plan to 
explore these evaluation tools in future work to further 
strengthen the model’s applicability in clinical settings. 
Moreover, in future research,  we  emphasize the need 
for the use of advanced imputation strategies, such as 

multiple imputation, which can reduce potential bias 
and improve model robustness by addressing missing 
data more comprehensively. This method has been suc-
cessfully applied in geriatric and orthopedic research 
to preserve statistical power, minimize selection bias, 
and maintain representativeness of vulnerable popula-
tions, particularly when key variables like femoral neck 
T-scores are frequently missing [55].

However, this study is among the first to demon-
strate the clinical utility of survival-based ML mod-
els in the field of orthopedic surgery. Specifically, we 
applied these methods to predict the risk and timing of 
rehospitalization after hip fracture—an outcome of sig-
nificant concern in aging populations. While survival 
analysis using ML has been widely applied in oncology 
and neurology, its adoption in orthopedics has been 
limited. Our findings provide strong predictive perfor-
mance and practical, interpretable results that highlight 
key clinical risk factors, such as femoral neck T-score, 
operative time, and BMI. Identifying these modifiable 
predictors may support clinicians in tailoring periop-
erative management strategies to reduce preventable 
readmissions.

Beyond predictive accuracy, this study also serves as a 
methodological foundation for future research in ortho-
pedic populations. To our knowledge, it is the first to 
demonstrate the feasibility, interpretability, and clini-
cal utility of survival-based ML models in this setting. 
Consequently, it offers a reproducible framework for 
subsequent orthopedic studies to monitor long-term 
outcomes. By bridging the gap between advanced analyt-
ics and real-world surgical care, this study supports the 
broader integration of survival-based ML in orthopedics 
and highlights its potential to improve patient outcomes 
and optimize care pathways.

Conclusion
In conclusion, the results show that the GB model per-
forms best in predicting rehospitalization risk, although 
further prospective validation is needed. However, the 
CoxPH model showed the closest alignment with KM 
survival curves, while the GB model diverged the most. 
This highlights the need for multiple metrics when 
assessing survival models, as AUC and C-index evalu-
ate risk ranking, whereas survival curves focus on timing 
accuracy. The choice of the metric depends on whether 
the priority is risk differentiation or timing accuracy. 
This study also highlights the importance of factors 
such as femoral neck T-score, age, BMI, operation time, 
compression fractures, and total calcium in predicting 
rehospitalization.
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