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developmental cervical spinal stenosis based
on HRVIT neural network
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Abstract

Background Developing computer-assisted methods to measure the Torg-Pavlov ratio (TPR), defined as the ratio

of the sagittal diameter of the cervical spinal canal to the sagittal diameter of the corresponding vertebral body on lat-
eral radiographs, can reduce subjective influence and speed up processing. The TPR is a critical diagnostic parameter
for developmental cervical spinal stenosis (DCSS), as it normalizes variations in radiographic magnification and pro-
vides a cost-effective alternative to CT/MRI in resource-limited settings. No study focusing on automatic measure-
ment was reported. The aim was to develop a deep learning-based model for automatically measuring the TPR,

and then to establish the distribution of asymptomatic Chinese TPR.

Methods A total of 1623 lateral cervical X-ray images from normal individuals were collected. 1466 and 157 images
were used as the training dataset and testing dataset, respectively. We adopted a neural network called High-Reso-
lution Vision Transformer (HRVIT), which was trained on the annotated X-ray image dataset to automatically locate
the landmarks and calculate the TPR. The accuracy of the TPR measurement was evaluated using mean absolute error
(MAE), intra-class correlation coefficient (ICC), r value and Bland-Altman plot.

Results The TPR at C2-C7 was 1.26,0.92,0.90, 0.93,0.92, and 0.89, respectively. The MAE between HRVIT and surgeon
R1 was 0.01, between surgeon R1 and surgeon R2 was 0.17, between surgeon R1 and surgeon R3 was 0.17. The accu-
racy of HRVIT for DCSS diagnosis was 84.1%, which was greatly higher than those of both surgeon R2 (57.3%) and sur-
geon R3 (56.7%). The consistency of TPR measurements was 0.77-0.9 (ICC) and 0.78-0.9 (r value) between HRVIT

and surgeon R1.

Conclusions We have explored a deep-learning algorithm for automated measurement of the TPR on cervical lateral
radiographs to diagnose DCSS, which had outstanding performance comparable to clinical senior doctors.
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Introduction

Congenital cervical spinal stenosis is considered an
important factor in the development of cervical spine dis-
eases [1]. Developmental cervical spinal stenosis (DCSS)
refers to the narrowing of the cervical spinal canal in the
process of development due to certain factors, such as
congenital anomalies, trauma, and degenerative changes
[2, 3]. The incidence of DCSS is approximately 5% to
20% in the general population [2, 4]. The early manifes-
tation is asymptomatic, and patients will have symptoms
only when abnormalities occur such as disc herniation,
hypertrophy of ligamentum flavum of the cervical spine
or acute injury. The diagnosis of DCSS is often delayed,
resulting in improper management. Therefore, there is
a need to diagnose DCSS at very early stage, which can
be helpful to prevent complications and avoid adverse
events caused by DCSS.

Studies have indicated DCSS is diagnosed when the
sagittal diameter of the cervical spinal canal is less than
12 mm [5, 6]. There are many methods to measure the
sagittal diameter of the cervical spinal canal includ-
ing X-ray films, Computed Tomography (CT) images
or magnetic resonance images (MRI), but CT and MRI
are expensive and not widely available in many lower-
level hospitals. In clinical practice, The Torg-Pavlov ratio
(TPR) is the most common method to diagnose DCSS,
which is the ratio of the sagittal diameter of the cervical
canal to the sagittal diameter of the cervical vertebral
body on X-rays images [6—8]. However, many factors
including multiple measurement or different doctors can
influence the accuracy of the TPR. Therefore, it is very
important to develop a tool of measuring TPR with high
accuracy and good repeatability.

Computer-assisted methods for image localization,
parameter measurement and data analysis can reduce
subjective influence and speed up processing [9, 10].
Artificial intelligence (AI) translation algorithms have
been applied to research on target segmentation and
lesion classification of diseases [11, 12]. Deep learning is
a sub-field of Al and has been used in the field of medi-
cal image diagnosis, which has exhibited advantages in
medicine and has been reported to help provide a pre-
cise diagnosis [13-16]. Recently, research on landmark
detection in cervical X-rays using AI algorithms has
begun [17], indicating enormous potential for diagnos-
ing cervical stenosis with developmental origins by pow-
erful Al algorithms. So far, there was no study focusing
on automatic measurement method of the TPR. The
purpose of this study was to propose a precise and scal-
able quantitative network and evaluate its feasibility to
assist for DCSS diagnosis.
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Materials and methods

Dataset preparation

This study was approved by the review board of the
China Three Gorges University. All study methods were
conducted in accordance with the China Three Gorges
University guidelines and regulations, and all experimen-
tal protocols were approved by the China Three Gorges
University committee. Informed consent requirement
was waived by the China Three Gorges University com-
mittee as retrospective data were used. Subjects from
the outpatient department between January 2018 and
September 2023 were included in the study. The cervi-
cal spine lateral radiographs of these subjects were col-
lected sequentially from the hospital’s Picture Archiving
and Communication System (PACS), original images had
a resolution of 2480 X 3072 pixels (mean pixel size: 0.15
mm, derived from DICOM metadata). All images were
resampled to 512 x 512 pixels for model input. The study
included only adult subjects to ensure the maturity of the
cervical spine bones. The exclusion criteria were as fol-
lows: (1) a history of cervical spine surgery; (2) spinal
scoliosis, cervical compression fracture, spinal tubercu-
losis, or spinal tumor; (3) unclear visualization of the C7
vertebral body; (4) severe osteophytes or fusion of adja-
cent vertebrae; (5) spinal symptoms such as limb numb-
ness, pain, weakness, or unstable walking; and (6) poor
X-ray image quality resulting in inaccurate landmarks.
A total of 2000 cervical spine anteroposterior and lateral
radiographs were collected. After screening and exclu-
sion, 1623 lateral radiographs were included in the study,
1466 lateral radiographs were used as training dataset,
and the remaining 157 lateral radiographs were used as
testing dataset. To better evaluate the generalization and
accuracy of the quantitative model, The test dataset was
stratified by age, gender, and geographic region to evalu-
ate model generalizability across diverse populations
Fig. 1). Model performance (MAE, ICC) was separately
evaluated for each age segment, gender group.

Landmark annotations

The datasets were manually annotated with landmark
coordinates y,, by three spinal surgeons (refer to as R1,
R2, and R3) with clinical experience 10 years, 5 years, and
5 years, respectively. As R1 has more extensive clinical
experience, the annotation points and measurements by
R1 were considered as the gold standard, while the anno-
tation points and measurements by R2 and R3 were used
as the comparison group to validate the performance of
the model (Annotations from surgeons R2 and R3 were
used exclusively for evaluating inter-surgeon variability
and were not included in the training dataset). Surgeon
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Subjects aged >18 years who underwent lateral cervical radiographs
between January 2018 and September 2022 (n=2000)

history of cervical surgery,
spinal symptoms (n=64)

spinal disease (n=32)

Remaining
(n=1748)
unclear visualization of the C7 !
(n=56), severe osteophytes or
fusion of adjacent vertebrae :
(n= 69) Remaining
(n=1623)
poor X-ray image (n=156)
Remaining
(n=1623)

Training set
(n=1466)

Fig. 1 Subjects'inclusion and exclusion process in this study

R1’s annotations were designated as the gold stand-
ard due to his extensive clinical experience (10 years).
While averaging annotations from multiple experts could
reduce bias, prior study in spinal land-marking have
shown that senior surgeons exhibit significantly lower
inter-observer variability compared to juniors [18]. This
approach ensures alignment with established clinical
expertise. To validate the consistency of the gold stand-
ard annotations, surgeon R1 re-annotated 100 randomly
selected images after a 80-week interval. Intra-class cor-
relation coefficient (ICC) and mean absolute error (MAE)
were calculated to quantify intra-observer variability.
Spinal surgeons underwent comprehensive departmen-
tal discussions and agreed on the labeling method before
commencing their work. Subsequently, Gaussian heat-
maps were generated for labels using coordinates similar
to previous works [19, 20]. To be specific, these heatmaps
P,, were automatically constructed as following:

—Ily — e I9)
Pgt = exp(zgzz ’

where o controlled the spread of the Gaussian heatmap
and was set as 1.5 in our experiments.

Test set (n=157)

Definitions of landmarks and parameter

Each radiograph from the sagittal view had a total of 18
landmarks annotated. For typical vertebrae ranging from
C2 to C7, the midpoints of the vertebral body’s anterior,
middle, and posterior edges were marked. In order to
minimize measurement error, the annotations of all land-
marks were made as close to the corticomedullary mar-
gin of the vertebral body as possible. The Lim’s method
was applied to quantify DCSS, which has been shown to
have excellent agreement and smaller errors [21]. Spe-
cifically, DCSS will be considered if the sagittal devel-
opmental diameter (SDD) divided by the vertebral body
diameter (VBD) of the same vertebra was less than 0.75.
The specific name of each landmark and the method for
measurement are illustrated in Fig. 2.

Robustness training and reliability systems

To enhance real-world applicability, the following
safeguards were implemented. Data quality control:
entropy-based filtering: Image quality was quantified
using Shannon entropy. A sliding window (64 X 64 pix-
els) calculated local entropy, and images with global
entropy <6.5 (normalized scale) were flagged for manual
review. This threshold was empirically determined on a
validation set to exclude motion-blurred or low-contrast
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Fig. 2 The landmark annotation and methodology of the Trog-Pavlov ratio measur- ement, a diagrammatic sketch of measuring the Trog-Pavlov
ratio; b actual measurement methods on cervical X-ray, the red dots represent the midpoint of the anterior and posterior edges of the vertebral
body, and the yellow dots represent the midpoint of the spinous process root. Sagittal developmental diameter of the cervical canal (SDD): distance

between the midpoint of the vertebral

images. Robustness training: training images were aug-
mented with Gaussian noise (o= 0.1), motion blur (ker-
nel size= 9x 9), and contra- st adjustments (+ 15%) to
simulate real-world variability. Confidence scoring: heat-
map peak values were normalized to [0,1]. Predictions
with normalized heatmap peak values <0.7 were flagged
as uncertain. This threshold was empirically determined
using a validation set to achieve 95% specificity in identi-
fying low-confidence cases.

Measurement model development

The process of quantifying DCS by a deep learning model
involved two main components. Firstly, a heatmap pre-
diction network was employed to detect landmarks on
sagittal radiographs, and then secondly, mathemati-
cal formulas are applied to calculate S{,)—BD values for
quantification.

The high-resolution vision transformer (HRViT) was
applied to identify the vertebral landmarks as the heat-
map prediction network, which maintained a high-reso-
lution architecture with the vision transformer (ViT) as
its backbone [22]. The high-resolution architecture was
organized into four sequential stages, where the first
stage features a high-resolution branch, followed by par-
allel summation of high-to-low resolution branches in
the subsequent stages. The information was interchanged
between the parallel branches after each stage, finally
producing 18-channel heatmaps that corresponded to 18
vertebral landmarks. The loss function, evaluated using
root mean square error (RMSE), compared the ground
truth and prediction heatmaps. Moreover, compared to
conventional convolutional neural networks (CNNs), ViT
was more effective in exploring the relations between
vertebral landmarks in different regions of the image
owing to its ability to capture long-range dependencies.

While CNNs were suitable for learning local features,
they may struggle with capturing global landmark rela-
tions. HRVIT maintained this ability by utilizing efficient
components, including HRViT attention (HRViTAttn)
and mixed-scale convolutional feed forward network
(MixCEN). To be specific, HRViTAttn removed redun-
dant keys and values to improve efficiency and enhances
the model expressivity with orthogonal local attentions
in parallel for global relations. Additionally, the MixCFN
was applied to replace the original feed forward network
(FEN) in ViT, which can boost the performance of HRViT
with a more simplified structure.

After heatmap prediction, the coordinates of the maxi-
mum value were defined as the predicted locations,
which are then mapped to the original image using affine
transformation to enable quantification.

The landmark detection network was trained on a cer-
vical radiograph dataset. Before training, all radiographs
were preprocessed by resizing to a resolution of 512
%x512. The Adam optimizer [23] was employed with an
initial learning rate of 5e™>, which was reduced to 5e*
and 5e~® at the 20" and 35" epochs, respectively. The
model was trained on PyTorch (Version 1.8) for 150 itera-
tions on one NVIDIA A100 GPU. After training, the pre-
dicted landmark coordinates and mathematical formulas
were utilized for automatic TPR quantification by Python
(Version 3.7). An overview of model implementation was
presented in Fig. 3.

Measurement performance

For further evaluation of measurement performance, our
model was compared with the reference standards on the
test set by calculating the MAE, the RMSE and the ICC.
MAE and RMSE were calculated in millimeters after
scaling pixel coordinates to physical dimensions using
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Fig. 3 Overview of model implementation

the DICOM metadata (pixel spacing: 0.15 mm * 0.02
mm). Specifically, MAE and RMSE were respectively

defined as 1y 1, -q. and  /isw o 0 2, where i

was the number of vertebrae, Q denoted the quantifica-
tion value 5’%). ICC was used to assess consistency, where
ICC > 0.7 was considered sufficiently reliable. An r-value
> 0.7 indicated high correlation. Additionally, the average
difference and 95% Limits of Agreement (LoA) were
determined on the Bland-Altman plot. The reference
standard was defined as the average measurement values
of R1. To compare the performance of the model with
that of spinal surgeons, a t-test was used to compare the
differences between the average values of the surgeons
and the model. Furthermore, Comparing MAE between
the model and surgeons quantifies whether the model
replicates expert-level precision, a lower MAE between
the model and R1 (vs. R1, vs. R2/R3) indicates superior
alignment with expert annotations. And accuracy was
defined as the percentage of TPR measurements where
the model’s prediction fell within +0.05 of R1’s manual
measurement.

Table 1 Characteristics of subjects in the training and test sets

Characteristic Training set Test set
Number 1466 157
Agel(year)® 41541279 41.89+1241
Sex

Male 833(56.8%) 101(64.3%)
Female 633(43.2%) 56(35.7%)

ICC (95% Cl) intra-class correlation coefficient (95% confidence interval), MAEs
and RMSEs were expressed as the means + SD

2 Data were expressed as mean + SD

Results

General data distributions

The general data distribution was summarized in Tables 1
and 2. There were no significant differences in gender
composition and age distribution between the included
datasets. The average SDD for C2-C7 was 21.59 mm,
17.93 mm, 17.60 mm, 18.05 mm, 18.52 mm, and 18.12
mm, respectively. The average VBD for C2-C7 was 16.63
mm, 18.52 mm, 18.47 mm, 18.48 mm, 19.03 mm, and
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Table 2 Subgroup analysis results of test sets

Subgroup MAE (TPR) 1CC (95% ClI)

Age 18-40 0.02 0.85 (0.79-0.90)
Age 61-80 0.03 0.82 (0.75-0.88)
Male 0.01 0.88 (0.83-0.92)
Female 0.02 0.86 (0.81-0.90)

ICC (95% Cl) intra-class correlation coefficient (95% confidence interval), MAEs
and RMSEs were expressed as the means + SD

" Data were expressed as mean + SD

Table 3 The distribution of SDD (mm), VBD (mm), and TPR in the

dataset
number VBD SDD TPR The lower

90% limit of
TPR

2 1623 1663 +£188 2159+224 1314017 1.03

c3 1623 18524207 1793+1.78 098+0.13 0.76

C4 1623 1847 €217 1760+£1.74 096+0.14 0.74

5 1623 1848 +£493 1805+1.73 099+0.14 0.76

c6 1623 19.03£2.19 1852+£183 098+0.13 0.77

Cc7 1623 19694219 1812+180 093+£0.12 073

Data were expressed as mean + SD

TPR Torg-Pavlov ratio

19.69 mm, respectively. The average TPR for C2-C7 was
1.31, 0.98, 0.96, 0.99, 0.98, and 0.93, respectively. The test
dataset (n= 157) was stratified based on three key demo-
graphic factors, stratified according to age, a not exceed-
ing 2:1 male-to-female ratio (101 males, 56 females),
sampled from five regions across China (North, South,
East, West, Central). The distribution of these data was
shown in Table 3.

Computational efficiency of landmark localization

The average annotation time for each cervical lateral
X-ray was a few seconds, which faster than the 3-minute
annotation time of spinal surgeons. A typical example of
landmark detection by the model was shown in Fig. 4.

Reference standard vs. Prediction
B2

B

Prediction
-
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Measurement performance

The measurements using the model were compared
to the reference standard values measuring by the spi-
nal surgeon with 10 years’ clinical practice. The results
showed that the reference standard values of the TPR at
C2-C7 was 1.26, 0.92, 0.90, 0.93, 0.92, and 0.89, respec-
tively, and the model-estimated values at C2-C7 was 1.24,
0.90, 0.89, 0.92, 0.92, and 0.88, respectively. There was no
significant difference between the two groups (p> 0.05)
(Table 4).

Furthermore, comparing the overall performance of
the model with the reference standard, the model’s pre-
dicted values were consistent and reliable (ICC 0.77-0.9,
r 0.78-0.9) each segment of C2-C7 (Table 5). The scat-
ter plots and Bland-Altman plots showing the mean dif-
ference and 95% limits of agreement of C2-C7 segments
were shown in Fig. 5. To compare the measurement dif-
ferences between the model and other spine surgeons,
R1 was compared to the model, R2, and R3. The results
showed that at each segment, the MAE between R1 and
the model was lower than the MAE between R1 and R2,
as well as R1 and R3. The mean MAE between R1 and the
model was 0.01, while the mean MAE between R1 and R2
was 0.17, and between R1 and R3 was 0.17. The model’s
alignment with surgeon R1’s annotations achieved an
accuracy of 84%, reflecting its training on R1’s labeled
data. In comparison, the inter-surgeon agreement
between R1 and R2 was 57%, and between R1 and R3 was
56% (Table 6) (R2 and R3 annotations were used only for
testing).

Validation on noisy data

To evaluate robustness, 50 test images were artificially
corrupted with noise (0= 0.2) and motion blur (kernel=
15 x15). MAE increase: model performance degraded
marginally from 0.01 (clean data) to 0.04 (corrupted
data). Confidence scores: scores decreased by 12% (from
0.82 £0.10 to 0.72 +0.12), with 18% of predictions flagged
as uncertain. Filter efficacy: the entropy-based filter
excluded 22% of corrupted images, reducing erroneous
predictions by 32% (p< 0.01).

Reference standard
- ;

Fig. 4 Representative images illustrating landmark detection by our model, a the automatic marking points of the model basically overlap
with the marking points of senior surgeon; b landmark detection by the model from C2-C7; ¢ marking points by senior surgeon from C2-C7
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Table 4 Measurement values of the spinal surgeon and model
estimation at C2-C7

R1 Model t p
TPR
Q 126 +£0.18 124 £0.15 - 1.1 027
3 092+0.14 090+0.14 1.21 0.23
c4 090+0.16 089+0.16 1.01 0.31
5 093 +0.16 092 +0.15 0.67 0.51
c6 092 +0.15 092 +0.15 0.05 0.96
7 0.89+0.15 0.88+0.12 047 0.64

Data are expressed as the means + SDs

P < 0.05 indicates significant difference between the model and reference
standard

Table 5 Comparison consistence between the reference
standards and the model measurement at C2-C7

Parameter 1CC(95%Cl) r MAEs RMSEs

The TPR
2 0.77(0.69-0.83) 0.78* 0.02+0.11 0.11+£0.03
a 0.85(0.79-0.89) 0.85% 0.02 +0.08 0.08 £0.02
C4 0.89(0.85-0.92) 0.90* 0.02 £0.07 0.07 £0.01
5 0.90(0.86-0.92) 0.90* 0.01 £0.07 0.07 £0.01
6 0.87(0.83-0.91) 0.87% <001 0.07 +£0.01
Cc7 0.78(0.71-0.83) 0.79* 0.01 £0.09 0.09 £0.02

MAEs and RMSEs were expressed as the means + SD

ICC (95% Cl) intra-class correlation coefficient (95% confidence interval), r
represented Pearson correlation coefficient, SD standard deviation

*p <0.05

Intra- and inter-surgeon variability

Surgeon R1 demonstrated high intra-observer consist-
ency, with an ICC of 0.91 (95% CI: 0.87-0.94) and MAE
of 0.03 + 0.01 for TPR measurements. In comparison, the
inter-surgeon agreement between R1 and R2/R3 was sig-
nificantly lower (ICC: 0.56-0.58; MAE: 0.17-0.19). Natu-
ral variation in manual measurements is thus inherent,
even for experienced clinicians.

Discussion

In most cases, the SDD and VBD which are measured
with manual or mobile assistance differ due to different
scales or different hospitals on cervical X-ray images.
Although variability in traditional manual measure-
ments is a common and unavoidable phenomenon, its
accuracy and repeatability of the TPR primarily depend
on the operator’s experience and judgment [21]. Moreo-
ver, manual measurement is also a time-consuming task.
Therefore, these factors can cause significant inconven-
ience and increase workload for clinical physicians. Most
importantly, whether a patient has DCSS may be affected,
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and then the patient’s treatment plan may be influenced.
This study developed a deep learning-based model which
could carry out automatically and accurately SDD and
VB measurement, to improve the accuracy and consist-
ency of DCSS diagnosis.

With the development of Al technique, many neu-
ral networks based on deep learning have been widely
applied in the segmentation, detection, diagnosis, and
quantitative assessment of spinal images, achieving
high accuracy comparable to manual analysis by doc-
tors [11, 12]. A study showed that a CNN model based
on EfficientNet-B2 architecture can improve significantly
diagnostic accuracy for cervical cord compression due to
degenerative canal stenosis on radiography [14]. Cross
NM et al developed a deep learning model with excellent
performance compared to doctors, which can automati-
cally evaluate lumbar spine MRI including classification
of central canal stenosis, neural foraminal stenosis, and
facet arthropathy [15]. In study of multimodal image con-
version, Chen et al. [13] reconstructed high-quality 3D
spinal structures from bi-planar X-ray images through
BX2S-Net model. Authors pointed out cGANs could be
a feasible technique to generate near-MR images from
CT without MR examinations for evaluation of the ver-
tebral body and intervertebral disc [24]. In this study, we
developed a deep learning-based model as well as HRViT
which can identify vertebral landmarks and then auto-
matically calculate the TPR. Prior to this, the HRNet
model has been successfully applied in automatically
measuring the sagittal intervertebral rotational motion
and spinal curvature on flexion-neutral-extension cer-
vical spine lateral radiographs [17], demonstrating fast,
accurate, and comprehensive performance. HRVIiT is
based on the ViT and utilizes a high-resolution architec-
ture divided into four consecutive stages. And it employs
efficient components such as HRViTAttn and MixCFN
to capture the relationship between local and global
landmarks. The loss function is evaluated using RMSE
by comparing the predicted heatmaps with the ground
truth. Compared to CNN, HRViT excels at capturing
long-range dependencies between landmarks.

The performance of our model was primarily evaluated
by calculating various measurement errors. In the TPR
measurement, the model had a very small MAE (0.01)
compared to senior surgeon R1, while physician R1 has a
high MAE (0.17) compared to junior R2 and R3. Moreo-
ver, The model achieved high consistency with surgeon
R1 (ICC 0.77-0.9), whose annotations showed excellent
intra-observer reliability (ICC= 0.91). This supports R1 as
areasonable reference standard, though natural measure-
ment variability persists even for experienced clinicians
(MAE= 0.03). The lower agreement between R1 and jun-
ior surgeons (R2/R3) highlights the subjective challenges
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Fig.5 Bland-Altman plots (a, ¢, e, g, i, k) and correlation scatter diagrams (b, d, f, h, j, I) show the difference and correlation between the model

and the reference standard
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Table 6 Alignment of model predictions with surgeon R1 and
inter-surgeon agreement

R1-model (MAE) R1-R2 (MAE) R1-R3 (MAE)

2 0.02+0.11 0.20+0.17 0.19+0.14
a3 0.02+0.08 0.16+0.14 0.15£0.13
Cc4 0.02 +0.07 0.17 £0.16 0.17 +0.16
5 0.01£0.07 0.17+0.14 0.16£0.13
c6 <001 0.16+£0.13 0.16+0.13
c7 0.01£0.09 0.16£0.12 0.16£0.13
Mean 0.01+0.08 0.17+0.14 0.17+0.14
Accuracy 84.1% 57.3% 56.7%

MAE were expressed as the mean + SD. Model was trained exclusively on
annotations from surgeon R1; R2 and R3 annotations were used only for testing

in manual TPR quantification. This indicated that the
model had similar or smaller errors compared to senior
spine surgeon, and had excellent measurement perfor-
mance reliable clinical application. In addition, The model
demonstrated high consistency with surgeon R1’s anno-
tations (84.1% accuracy), which was significantly higher
than the inter-surgeon agreement between R1 and jun-
ior surgeons (57.3% and 56.1%). This reflects the model’s
ability to replicate R1’s measurement patterns rather than
general superiority over clinicians. Future studies incor-
porating annotations from multiple experts are needed to
assess broader generalizability. Additionally, spinal detec-
tion primarily involves the localization and recognition of
vertebrae, which traditionally require manual interven-
tion by clinical doctors and are a time-consuming work
[25, 26]. In contrast, our model can measure the TPR in
just a few seconds, significantly faster than the 3 minutes
of manual measurements by clinical doctors. The model’s
performance on noisy data (MAE= 0.04) demonstrates
resilience to real-world imperfections, aligning with
Chen et al’s findings on entropy-based anomaly detec-
tion [27]. Low-confidence predictions (heatmap peaks
<0.7) prompt clinician review, preventing overreliance
on automated outputs. Severe osteophytes or fused ver-
tebrae (excluded via criteria 4) require fallback to manual
measurements, as automated localization may fail. These
measures ensure safe deployment in resource-limited
settings, though continuous monitoring is necessary to
address unforeseen scenarios. While the proposed model
demonstrates high accuracy in controlled settings, real-
world clinical deployment faces two critical challenges:
1) network latency: centralized cloud-based inference
may introduce delays (e.g., >500 ms) due to data trans-
mission bottlenecks, especially in regions with limited
bandwidth. Deploying the model on edge devices (e.g.,
NVIDIA Jetson AGX) enables on-site inference with
latency <200 ms, as validated in our tests; Quantizing
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the HRVIiT model to FP16 precision reduced memory
usage by 40% without sacrificing accuracy (MAE change
<0.005). 2) device compatibility: heterogeneous imaging
hardware (e.g., GE vs. Siemens X-ray systems) may cause
format discrepancies or calibration drift. The model was
integrated with a DICOM-compliant interface, ensur-
ing compatibility with hospital PACS systems (DICOM
standardization); Validation on 3 major vendors’ devices
(GE Revolution, Siemens Ysio, Philips DigitalDiagnost)
showed consistent performance (ICC> 0.85 for TPR
measurements).

The TPR provides preliminary disease pathogenesis,
predicts its progression, and plays a significant role in
assessing the risk of cervical spine injuries. Chen et al
considered the TPR was a useful radiological parameter
that alerted surgeon to patients with higher risk of spi-
nal cord-type cervical spine diseases, enabling personal-
ized decompression surgery [8]. Yue et al suggested the
TPR can be used to predict which cervical spine disease
patients were more likely to require decompression,
facilitating closer follow-up by physicians [28]. Nikolaus
Aebli et al proposed that a TPR less than 0.7 can be used
to predict the risk of acute cervical spinal cord injury fol-
lowing minor cervical spine injuries [29]. Additionally,
in patients with TPR below normal values, the posterior
cervical spine screw insertion is more challenging due to
the smaller size of the lamina and lateral mass. The TPR
is also the most commonly used method for diagnosing
DCSS, because it eliminates the problem of magnifica-
tion of the spine on X-rays and is cheaper compared to
CT or MRI. However, previous studies did not yielded
consistent results regarding the standard values for DCSS
using the TPR. Therefore, it is crucial to objectively and
accurately measure anatomical parameters of the cervical
spine and establish the TPR range in asymptomatic indi-
viduals for clinical diagnosis and prognosis evaluation of
cervical spine diseases.

Previous results indicated cervical spondylotic mye-
lopathy was more likely to be induced when the TPR was
less than 0.80 [30]. David Ezra et al demonstrated that
using a TPR less than 0.80 as the standard for DCSS was
not applicable to all populations [31]. However, this study
was conducted on American athletic subjects, so these
standards may not have absolute applicability in other
ethnicities. The present study utilized a large sample with
age ranging from 18 to 87 years, which provided the reli-
ability of the reference values of DCSS diagnosis. The
present results also demonstrated that there were differ-
ent SDD changes from C2 to C7, the maximum SDD at
C2, the minimum SDD at C4, a gradual decrease in SDD
from C2 to C4, and a slight increase at C6 and C7, which
were consistent with previous reports [5, 6, 8, 27, 28,
30, 31], those trends may be related to the fact that C4
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cervical vertebra contributes the most of overall range of
motion in daily activities [3]. Most importantly, the pre-
sent results indicated DCSS can be diagnosed from cervi-
cal X-ray when the TPR were less than 0.77 at C3, C4 less
than 0.73, C5 less than 0.76, C6 less than 0.77 and C7 less
than 0.73.

While our study utilized a large outpatient cohort, poten-
tial selection bias exists due to the exclusion of asympto-
matic individuals from physical examination centers. To
mitigate this, future work will incorporate multi-center
data, including healthy populations from community
health screenings. This study has also three key limita-
tions. Firstly, the model was trained solely on annotations
from a single senior surgeon (R1). While this ensures con-
sistency with R1’s clinical expertise, it may inherit subjec-
tive biases inherent to individual annotators. The lower
agreement between the model and junior surgeons (R2/
R3) does not imply inferior performance by the surgeons,
but rather highlights the need for multi-expert consensus
in training data to improve generalizability. Future studies
will integrate annotations from multiple experts. Secondly,
current analysis is limited to X-rays, multimodal fusion
(combining X-rays with CT/MRI using attention-based
fusion networks to improve diagnostic accuracy) and lon-
gitudinal study (A 5-year follow-up plan is underway to
track DCSS progression in model-diagnosed patients) are
needed for comprehensive assessment in the future stud-
ies. Thirdly, although our study compared the results with
those of doctors’ measurements, it did not compare with
other existing relevant measurement models. the compari-
son with other similar deep learning models needs to con-
firm the accuracy and generalization ability of the HRViT
model in the future studies.

Conclusions

We have developed a deep learning-based model for
automated measurement of the TPR on cervical lateral
radiographs to diagnose DCSS, demonstrating perfor-
mance comparable to clinical senior doctors. Addition-
ally, based on the parameters of the dataset, we have
established the TPR distribution of the each cervical
segment in asymptomatic Chinese individuals, as well
as the standard values for diagnosing DCSS in different
segments of the cervical spine in Chinese individuals.
The present model will automatically generate parameter
measurement reports, facilitating clinical diagnosis and
treatment guidance for physicians and patients, which
hold great potential for translation in future clinical
practice.
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