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Abstract 

Background Developing computer-assisted methods to measure the Torg-Pavlov ratio (TPR), defined as the ratio 
of the sagittal diameter of the cervical spinal canal to the sagittal diameter of the corresponding vertebral body on lat-
eral radiographs, can reduce subjective influence and speed up processing. The TPR is a critical diagnostic parameter 
for developmental cervical spinal stenosis (DCSS), as it normalizes variations in radiographic magnification and pro-
vides a cost-effective alternative to CT/MRI in resource-limited settings. No study focusing on automatic measure-
ment was reported. The aim was to develop a deep learning-based model for automatically measuring the TPR, 
and then to establish the distribution of asymptomatic Chinese TPR.

Methods A total of 1623 lateral cervical X-ray images from normal individuals were collected. 1466 and 157 images 
were used as the training dataset and testing dataset, respectively. We adopted a neural network called High-Reso-
lution Vision Transformer (HRViT), which was trained on the annotated X-ray image dataset to automatically locate 
the landmarks and calculate the TPR. The accuracy of the TPR measurement was evaluated using mean absolute error 
(MAE), intra-class correlation coefficient (ICC), r value and Bland-Altman plot.

Results The TPR at C2-C7 was 1.26, 0.92, 0.90, 0.93, 0.92, and 0.89, respectively. The MAE between HRViT and surgeon 
R1 was 0.01, between surgeon R1 and surgeon R2 was 0.17, between surgeon R1 and surgeon R3 was 0.17. The accu-
racy of HRViT for DCSS diagnosis was 84.1%, which was greatly higher than those of both surgeon R2 (57.3%) and sur-
geon R3 (56.7%). The consistency of TPR measurements was 0.77-0.9 (ICC) and 0.78-0.9 (r value) between HRViT 
and surgeon R1.

Conclusions We have explored a deep-learning algorithm for automated measurement of the TPR on cervical lateral 
radiographs to diagnose DCSS, which had outstanding performance comparable to clinical senior doctors.
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Introduction
Congenital cervical spinal stenosis is considered an 
important factor in the development of cervical spine dis-
eases [1]. Developmental cervical spinal stenosis (DCSS) 
refers to the narrowing of the cervical spinal canal in the 
process of development due to certain factors, such as 
congenital anomalies, trauma, and degenerative changes 
[2, 3]. The incidence of DCSS is approximately 5% to 
20% in the general population [2, 4]. The early manifes-
tation is asymptomatic, and patients will have symptoms 
only when abnormalities occur such as disc herniation, 
hypertrophy of ligamentum flavum of the cervical spine 
or acute injury. The diagnosis of DCSS is often delayed, 
resulting in improper management. Therefore, there is 
a need to diagnose DCSS at very early stage, which can 
be helpful to prevent complications and avoid adverse 
events caused by DCSS.

Studies have indicated DCSS is diagnosed when the 
sagittal diameter of the cervical spinal canal is less than 
12 mm [5, 6]. There are many methods to measure the 
sagittal diameter of the cervical spinal canal includ-
ing X-ray films, Computed Tomography (CT) images 
or magnetic resonance images (MRI), but CT and MRI 
are expensive and not widely available in many lower-
level hospitals. In clinical practice, The Torg-Pavlov ratio 
(TPR) is the most common method to diagnose DCSS, 
which is the ratio of the sagittal diameter of the cervical 
canal to the sagittal diameter of the cervical vertebral 
body on X-rays images [6–8]. However, many factors 
including multiple measurement or different doctors can 
influence the accuracy of the TPR. Therefore, it is very 
important to develop a tool of measuring TPR with high 
accuracy and good repeatability.

Computer-assisted methods for image localization, 
parameter measurement and data analysis can reduce 
subjective influence and speed up processing [9, 10]. 
Artificial intelligence (AI) translation algorithms have 
been applied to research on target segmentation and 
lesion classification of diseases [11, 12]. Deep learning is 
a sub‐field of AI and has been used in the field of medi-
cal image diagnosis, which has exhibited advantages in 
medicine and has been reported to help provide a pre-
cise diagnosis [13–16]. Recently, research on landmark 
detection in cervical X-rays using AI algorithms has 
begun [17], indicating enormous potential for diagnos-
ing cervical stenosis with developmental origins by pow-
erful AI algorithms. So far, there was no study focusing 
on automatic measurement method of the TPR. The 
purpose of this study was to propose a precise and scal-
able quantitative network and evaluate its feasibility to 
assist for DCSS diagnosis.

Materials and methods
Dataset preparation
This study was approved by the review board of the 
China Three Gorges University. All study methods were 
conducted in accordance with the China Three Gorges 
University guidelines and regulations, and all experimen-
tal protocols were approved by the China Three Gorges 
University committee. Informed consent requirement 
was waived by the China Three Gorges University com-
mittee as retrospective data were used. Subjects from 
the outpatient department between January 2018 and 
September 2023 were included in the study. The cervi-
cal spine lateral radiographs of these subjects were col-
lected sequentially from the hospital’s Picture Archiving 
and Communication System (PACS), original images had 
a resolution of 2480 × 3072 pixels (mean pixel size: 0.15 
mm, derived from DICOM metadata). All images were 
resampled to 512 × 512 pixels for model input. The study 
included only adult subjects to ensure the maturity of the 
cervical spine bones. The exclusion criteria were as fol-
lows: (1) a history of cervical spine surgery; (2) spinal 
scoliosis, cervical compression fracture, spinal tubercu-
losis, or spinal tumor; (3) unclear visualization of the C7 
vertebral body; (4) severe osteophytes or fusion of adja-
cent vertebrae; (5) spinal symptoms such as limb numb-
ness, pain, weakness, or unstable walking; and (6) poor 
X-ray image quality resulting in inaccurate landmarks. 
A total of 2000 cervical spine anteroposterior and lateral 
radiographs were collected. After screening and exclu-
sion, 1623 lateral radiographs were included in the study, 
1466 lateral radiographs were used as training dataset, 
and the remaining 157 lateral radiographs were used as 
testing dataset. To better evaluate the generalization and 
accuracy of the quantitative model, The test dataset was 
stratified by age, gender, and geographic region to evalu-
ate model generalizability across diverse populations 
Fig.  1). Model performance (MAE, ICC) was separately 
evaluated for each age segment, gender group.

Landmark annotations
The datasets were manually annotated with landmark 
coordinates ygt, by three spinal surgeons (refer to as R1, 
R2, and R3) with clinical experience 10 years, 5 years, and 
5 years, respectively. As R1 has more extensive clinical 
experience, the annotation points and measurements by 
R1 were considered as the gold standard, while the anno-
tation points and measurements by R2 and R3 were used 
as the comparison group to validate the performance of 
the model (Annotations from surgeons R2 and R3 were 
used exclusively for evaluating inter-surgeon variability 
and were not included in the training dataset). Surgeon 
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R1’s annotations were designated as the gold stand-
ard due to his extensive clinical experience (10 years). 
While averaging annotations from multiple experts could 
reduce bias, prior study in spinal land-marking have 
shown that senior surgeons exhibit significantly lower 
inter-observer variability compared to juniors [18]. This 
approach ensures alignment with established clinical 
expertise. To validate the consistency of the gold stand-
ard annotations, surgeon R1 re-annotated 100 randomly 
selected images after a 80-week interval. Intra-class cor-
relation coefficient (ICC) and mean absolute error (MAE) 
were calculated to quantify intra-observer variability. 
Spinal surgeons underwent comprehensive departmen-
tal discussions and agreed on the labeling method before 
commencing their work. Subsequently, Gaussian heat-
maps were generated for labels using coordinates similar 
to previous works [19, 20]. To be specific, these heatmaps 
Pgt were automatically constructed as following:

where σ controlled the spread of the Gaussian heatmap 
and was set as 1.5 in our experiments.

Pgt = exp
−� y− ygt �

2
2
)

2σ 2
,

Definitions of landmarks and parameter
Each radiograph from the sagittal view had a total of 18 
landmarks annotated. For typical vertebrae ranging from 
C2 to C7, the midpoints of the vertebral body’s anterior, 
middle, and posterior edges were marked. In order to 
minimize measurement error, the annotations of all land-
marks were made as close to the corticomedullary mar-
gin of the vertebral body as possible. The Lim’s method 
was applied to quantify DCSS, which has been shown to 
have excellent agreement and smaller errors [21]. Spe-
cifically, DCSS will be considered if the sagittal devel-
opmental diameter (SDD) divided by the vertebral body 
diameter (VBD) of the same vertebra was less than 0.75. 
The specific name of each landmark and the method for 
measurement are illustrated in Fig. 2.

Robustness training and reliability systems
To enhance real-world applicability, the following 
safeguards were implemented. Data quality control: 
entropy-based filtering: Image quality was quantified 
using Shannon entropy. A sliding window (64 × 64 pix-
els) calculated local entropy, and images with global 
entropy < 6.5 (normalized scale) were flagged for manual 
review. This threshold was empirically determined on a 
validation set to exclude motion-blurred or low-contrast 

Fig. 1 Subjects’ inclusion and exclusion process in this study
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images. Robustness training: training images were aug-
mented with Gaussian noise (σ= 0.1), motion blur (ker-
nel size= 9× 9), and contra- st adjustments (± 15%) to 
simulate real-world variability. Confidence scoring: heat-
map peak values were normalized to [0,1]. Predictions 
with normalized heatmap peak values < 0.7 were flagged 
as uncertain. This threshold was empirically determined 
using a validation set to achieve 95% specificity in identi-
fying low-confidence cases.

Measurement model development
The process of quantifying DCS by a deep learning model 
involved two main components. Firstly, a heatmap pre-
diction network was employed to detect landmarks on 
sagittal radiographs, and then secondly, mathemati-
cal formulas are applied to calculate SDD

VB  values for 
quantification.

The high-resolution vision transformer (HRViT) was 
applied to identify the vertebral landmarks as the heat-
map prediction network, which maintained a high-reso-
lution architecture with the vision transformer (ViT) as 
its backbone [22]. The high-resolution architecture was 
organized into four sequential stages, where the first 
stage features a high-resolution branch, followed by par-
allel summation of high-to-low resolution branches in 
the subsequent stages. The information was interchanged 
between the parallel branches after each stage, finally 
producing 18-channel heatmaps that corresponded to 18 
vertebral landmarks. The loss function, evaluated using 
root mean square error (RMSE), compared the ground 
truth and prediction heatmaps. Moreover, compared to 
conventional convolutional neural networks (CNNs), ViT 
was more effective in exploring the relations between 
vertebral landmarks in different regions of the image 
owing to its ability to capture long-range dependencies. 

While CNNs were suitable for learning local features, 
they may struggle with capturing global landmark rela-
tions. HRViT maintained this ability by utilizing efficient 
components, including HRViT attention (HRViTAttn) 
and mixed-scale convolutional feed forward network 
(MixCFN). To be specific, HRViTAttn removed redun-
dant keys and values to improve efficiency and enhances 
the model expressivity with orthogonal local attentions 
in parallel for global relations. Additionally, the MixCFN 
was applied to replace the original feed forward network 
(FFN) in ViT, which can boost the performance of HRViT 
with a more simplified structure.

After heatmap prediction, the coordinates of the maxi-
mum value were defined as the predicted locations, 
which are then mapped to the original image using affine 
transformation to enable quantification.

The landmark detection network was trained on a cer-
vical radiograph dataset. Before training, all radiographs 
were preprocessed by resizing to a resolution of 512 
× 512. The Adam optimizer [23] was employed with an 
initial learning rate of  5e−3, which was reduced to  5e−4 
and  5e−5 at the  20th and  35th epochs, respectively. The 
model was trained on PyTorch (Version 1.8) for 150 itera-
tions on one NVIDIA A100 GPU. After training, the pre-
dicted landmark coordinates and mathematical formulas 
were utilized for automatic TPR quantification by Python 
(Version 3.7). An overview of model implementation was 
presented in Fig. 3.

Measurement performance
For further evaluation of measurement performance, our 
model was compared with the reference standards on the 
test set by calculating the MAE, the RMSE and the ICC. 
MAE and RMSE were calculated in millimeters after 
scaling pixel coordinates to physical dimensions using 

Fig. 2 The landmark annotation and methodology of the Trog-Pavlov ratio measur- ement, a diagrammatic sketch of measuring the Trog-Pavlov 
ratio; b actual measurement methods on cervical X-ray, the red dots represent the midpoint of the anterior and posterior edges of the vertebral 
body, and the yellow dots represent the midpoint of the spinous process root. Sagittal developmental diameter of the cervical canal (SDD): distance 
between the midpoint of the vertebral
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the DICOM metadata (pixel spacing: 0.15 mm ± 0.02 
mm). Specifically, MAE and RMSE were respectively 
defined as 1

m

∑m
i=1 |Qpred − Qgt | and √ 1

m

∑m
i=1(Qpred − Qgt )

2 , where i 
was the number of vertebrae, Q denoted the quantifica-
tion value SDDVB  . ICC was used to assess consistency, where 
ICC ≥ 0.7 was considered sufficiently reliable. An r-value 
≥ 0.7 indicated high correlation. Additionally, the average 
difference and 95% Limits of Agreement (LoA) were 
determined on the Bland-Altman plot. The reference 
standard was defined as the average measurement values 
of R1. To compare the performance of the model with 
that of spinal surgeons, a t-test was used to compare the 
differences between the average values of the surgeons 
and the model. Furthermore, Comparing MAE between 
the model and surgeons quantifies whether the model 
replicates expert-level precision, a lower MAE between 
the model and R1 (vs. R1, vs. R2/R3) indicates superior 
alignment with expert annotations. And accuracy was 
defined as the percentage of TPR measurements where 
the model’s prediction fell within ± 0.05 of R1’s manual 
measurement.

Results
General data distributions
The general data distribution was summarized in Tables 1 
and 2. There were no significant differences in gender 
composition and age distribution between the included 
datasets. The average SDD for C2-C7 was 21.59 mm, 
17.93 mm, 17.60 mm, 18.05 mm, 18.52 mm, and 18.12 
mm, respectively. The average VBD for C2-C7 was 16.63 
mm, 18.52 mm, 18.47 mm, 18.48 mm, 19.03 mm, and 

Fig. 3 Overview of model implementation

Table 1 Characteristics of subjects in the training and test sets

ICC (95% CI) intra-class correlation coefficient (95% confidence interval), MAEs 
and RMSEs were expressed as the means ± SD
a Data were expressed as mean ± SD

Characteristic Training set Test set

Number 1466 157

Age(year)a 41.54 ± 12.79 41.89 ± 12.41

Sex

Male 833(56.8%) 101(64.3%)

Female 633(43.2%) 56(35.7%)
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19.69 mm, respectively. The average TPR for C2-C7 was 
1.31, 0.98, 0.96, 0.99, 0.98, and 0.93, respectively. The test 
dataset (n= 157) was stratified based on three key demo-
graphic factors, stratified according to age, a not exceed-
ing 2:1 male-to-female ratio (101 males, 56 females), 
sampled from five regions across China (North, South, 
East, West, Central). The distribution of these data was 
shown in Table 3.

Computational efficiency of landmark localization
The average annotation time for each cervical lateral 
X-ray was a few seconds, which faster than the 3-minute 
annotation time of spinal surgeons. A typical example of 
landmark detection by the model was shown in Fig. 4.

Measurement performance
The measurements using the model were compared 
to the reference standard values measuring by the spi-
nal surgeon with 10 years’ clinical practice. The results 
showed that the reference standard values of the TPR at 
C2-C7 was 1.26, 0.92, 0.90, 0.93, 0.92, and 0.89, respec-
tively, and the model-estimated values at C2-C7 was 1.24, 
0.90, 0.89, 0.92, 0.92, and 0.88, respectively. There was no 
significant difference between the two groups (p> 0.05) 
(Table 4).

Furthermore, comparing the overall performance of 
the model with the reference standard, the model’s pre-
dicted values were consistent and reliable (ICC 0.77–0.9, 
r 0.78–0.9) each segment of C2-C7 (Table  5). The scat-
ter plots and Bland-Altman plots showing the mean dif-
ference and 95% limits of agreement of C2-C7 segments 
were shown in Fig. 5. To compare the measurement dif-
ferences between the model and other spine surgeons, 
R1 was compared to the model, R2, and R3. The results 
showed that at each segment, the MAE between R1 and 
the model was lower than the MAE between R1 and R2, 
as well as R1 and R3. The mean MAE between R1 and the 
model was 0.01, while the mean MAE between R1 and R2 
was 0.17, and between R1 and R3 was 0.17. The model’s 
alignment with surgeon R1’s annotations achieved an 
accuracy of 84%, reflecting its training on R1’s labeled 
data. In comparison, the inter-surgeon agreement 
between R1 and R2 was 57%, and between R1 and R3 was 
56% (Table 6) (R2 and R3 annotations were used only for 
testing).

Validation on noisy data
To evaluate robustness, 50 test images were artificially 
corrupted with noise (σ= 0.2) and motion blur (kernel= 
15 × 15). MAE increase: model performance degraded 
marginally from 0.01 (clean data) to 0.04 (corrupted 
data). Confidence scores: scores decreased by 12% (from 
0.82 ± 0.10 to 0.72 ± 0.12), with 18% of predictions flagged 
as uncertain. Filter efficacy: the entropy-based filter 
excluded 22% of corrupted images, reducing erroneous 
predictions by 32% (p< 0.01).

Table 2 Subgroup analysis results of test sets

ICC (95% CI) intra-class correlation coefficient (95% confidence interval), MAEs 
and RMSEs were expressed as the means ± SD
* Data were expressed as mean ± SD

Subgroup MAE (TPR) ICC (95% CI)

Age 18–40 0.02 0.85 (0.79–0.90)

Age 61–80 0.03 0.82 (0.75–0.88)

Male 0.01 0.88 (0.83–0.92)

Female 0.02 0.86 (0.81–0.90)

Table 3 The distribution of SDD (mm), VBD (mm), and TPR in the 
dataset

Data were expressed as mean ± SD

TPR Torg-Pavlov ratio

number VBD SDD TPR The lower 
90% limit of 
TPR

C2 1623 16.63 ± 1.88 21.59 ± 2.24 1.31 ± 0.17 1.03

C3 1623 18.52 ± 2.07 17.93 ± 1.78 0.98 ± 0.13 0.76

C4 1623 18.47 ± 2.17 17.60 ± 1.74 0.96 ± 0.14 0.74

C5 1623 18.48 ± 4.93 18.05 ± 1.73 0.99 ± 0.14 0.76

C6 1623 19.03 ± 2.19 18.52 ± 1.83 0.98 ± 0.13 0.77

C7 1623 19.69 ± 2.19 18.12 ± 1.80 0.93 ± 0.12 0.73

Fig. 4 Representative images illustrating landmark detection by our model, a the automatic marking points of the model basically overlap 
with the marking points of senior surgeon; b landmark detection by the model from C2-C7; c marking points by senior surgeon from C2-C7
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Intra‑ and inter‑surgeon variability
Surgeon R1 demonstrated high intra-observer consist-
ency, with an ICC of 0.91 (95% CI: 0.87–0.94) and MAE 
of 0.03 ± 0.01 for TPR measurements. In comparison, the 
inter-surgeon agreement between R1 and R2/R3 was sig-
nificantly lower (ICC: 0.56–0.58; MAE: 0.17–0.19). Natu-
ral variation in manual measurements is thus inherent, 
even for experienced clinicians.

Discussion
In most cases, the SDD and VBD which are measured 
with manual or mobile assistance differ due to different 
scales or different hospitals on cervical X-ray images. 
Although variability in traditional manual measure-
ments is a common and unavoidable phenomenon, its 
accuracy and repeatability of the TPR primarily depend 
on the operator’s experience and judgment [21]. Moreo-
ver, manual measurement is also a time-consuming task. 
Therefore, these factors can cause significant inconven-
ience and increase workload for clinical physicians. Most 
importantly, whether a patient has DCSS may be affected, 

and then the patient’s treatment plan may be influenced. 
This study developed a deep learning-based model which 
could carry out automatically and accurately SDD and 
VB measurement, to improve the accuracy and consist-
ency of DCSS diagnosis.

With the development of AI technique, many neu-
ral networks based on deep learning have been widely 
applied in the segmentation, detection, diagnosis, and 
quantitative assessment of spinal images, achieving 
high accuracy comparable to manual analysis by doc-
tors [11, 12]. A study showed that a CNN model based 
on EfficientNet-B2 architecture can improve significantly 
diagnostic accuracy for cervical cord compression due to 
degenerative canal stenosis on radiography [14]. Cross 
NM et al developed a deep learning model with excellent 
performance compared to doctors, which can automati-
cally evaluate lumbar spine MRI including classification 
of central canal stenosis, neural foraminal stenosis, and 
facet arthropathy [15]. In study of multimodal image con-
version, Chen et  al. [13] reconstructed high-quality 3D 
spinal structures from bi-planar X-ray images through 
BX2S-Net model. Authors pointed out cGANs could be 
a feasible technique to generate near-MR images from 
CT without MR examinations for evaluation of the ver-
tebral body and intervertebral disc [24]. In this study, we 
developed a deep learning-based model as well as HRViT 
which can identify vertebral landmarks and then auto-
matically calculate the TPR. Prior to this, the HRNet 
model has been successfully applied in automatically 
measuring the sagittal intervertebral rotational motion 
and spinal curvature on flexion-neutral-extension cer-
vical spine lateral radiographs [17], demonstrating fast, 
accurate, and comprehensive performance. HRViT is 
based on the ViT and utilizes a high-resolution architec-
ture divided into four consecutive stages. And it employs 
efficient components such as HRViTAttn and MixCFN 
to capture the relationship between local and global 
landmarks. The loss function is evaluated using RMSE 
by comparing the predicted heatmaps with the ground 
truth. Compared to CNN, HRViT excels at capturing 
long-range dependencies between landmarks.

The performance of our model was primarily evaluated 
by calculating various measurement errors. In the TPR 
measurement, the model had a very small MAE (0.01) 
compared to senior surgeon R1, while physician R1 has a 
high MAE (0.17) compared to junior R2 and R3. Moreo-
ver, The model achieved high consistency with surgeon 
R1 (ICC 0.77–0.9), whose annotations showed excellent 
intra-observer reliability (ICC= 0.91). This supports R1 as 
a reasonable reference standard, though natural measure-
ment variability persists even for experienced clinicians 
(MAE= 0.03). The lower agreement between R1 and jun-
ior surgeons (R2/R3) highlights the subjective challenges 

Table 4 Measurement values of the spinal surgeon and model 
estimation at C2-C7

Data are expressed as the means ± SDs

P < 0.05 indicates significant difference between the model and reference 
standard

R1 Model t p

TPR

 C2 1.26 ± 0.18 1.24 ± 0.15 − 1.1 0.27

 C3 0.92 ± 0.14 0.90 ± 0.14 1.21 0.23

 C4 0.90 ± 0.16 0.89 ± 0.16 1.01 0.31

 C5 0.93 ± 0.16 0.92 ± 0.15 0.67 0.51

 C6 0.92 ± 0.15 0.92 ± 0.15 0.05 0.96

 C7 0.89 ± 0.15 0.88 ± 0.12 0.47 0.64

Table 5 Comparison consistence between the reference 
standards and the model measurement at C2-C7

MAEs and RMSEs were expressed as the means ± SD

ICC (95% CI) intra-class correlation coefficient (95% confidence interval), r 
represented Pearson correlation coefficient, SD standard deviation

* p < 0.05

Parameter ICC(95%CI) r MAEs RMSEs

The TPR

 C2 0.77(0.69–0.83) 0.78* 0.02 ± 0.11 0.11 ± 0.03

 C3 0.85(0.79–0.89) 0.85* 0.02 ± 0.08 0.08 ± 0.02

 C4 0.89(0.85–0.92) 0.90* 0.02 ± 0.07 0.07 ± 0.01

 C5 0.90(0.86–0.92) 0.90* 0.01 ± 0.07 0.07 ± 0.01

 C6 0.87(0.83–0.91) 0.87* < 0.01 0.07 ± 0.01

 C7 0.78(0.71–0.83) 0.79* 0.01 ± 0.09 0.09 ± 0.02
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Fig. 5 Bland–Altman plots (a, c, e, g, i, k) and correlation scatter diagrams (b, d, f, h, j, l) show the difference and correlation between the model 
and the reference standard
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in manual TPR quantification. This indicated that the 
model had similar or smaller errors compared to senior 
spine surgeon, and had excellent measurement perfor-
mance reliable clinical application. In addition, The model 
demonstrated high consistency with surgeon R1’s anno-
tations (84.1% accuracy), which was significantly higher 
than the inter-surgeon agreement between R1 and jun-
ior surgeons (57.3% and 56.1%). This reflects the model’s 
ability to replicate R1’s measurement patterns rather than 
general superiority over clinicians. Future studies incor-
porating annotations from multiple experts are needed to 
assess broader generalizability. Additionally, spinal detec-
tion primarily involves the localization and recognition of 
vertebrae, which traditionally require manual interven-
tion by clinical doctors and are a time-consuming work 
[25, 26]. In contrast, our model can measure the TPR in 
just a few seconds, significantly faster than the 3 minutes 
of manual measurements by clinical doctors. The model’s 
performance on noisy data (MAE= 0.04) demonstrates 
resilience to real-world imperfections, aligning with 
Chen et  al.’s findings on entropy-based anomaly detec-
tion [27]. Low-confidence predictions (heatmap peaks 
< 0.7) prompt clinician review, preventing overreliance 
on automated outputs. Severe osteophytes or fused ver-
tebrae (excluded via criteria 4) require fallback to manual 
measurements, as automated localization may fail. These 
measures ensure safe deployment in resource-limited 
settings, though continuous monitoring is necessary to 
address unforeseen scenarios. While the proposed model 
demonstrates high accuracy in controlled settings, real-
world clinical deployment faces two critical challenges: 
1) network latency: centralized cloud-based inference 
may introduce delays (e.g., > 500 ms) due to data trans-
mission bottlenecks, especially in regions with limited 
bandwidth. Deploying the model on edge devices (e.g., 
NVIDIA Jetson AGX) enables on-site inference with 
latency < 200 ms, as validated in our tests; Quantizing 

the HRViT model to FP16 precision reduced memory 
usage by 40% without sacrificing accuracy (MAE change 
< 0.005). 2) device compatibility: heterogeneous imaging 
hardware (e.g., GE vs. Siemens X-ray systems) may cause 
format discrepancies or calibration drift. The model was 
integrated with a DICOM-compliant interface, ensur-
ing compatibility with hospital PACS systems (DICOM 
standardization); Validation on 3 major vendors’ devices 
(GE Revolution, Siemens Ysio, Philips DigitalDiagnost) 
showed consistent performance (ICC> 0.85 for TPR 
measurements).

The TPR provides preliminary disease pathogenesis, 
predicts its progression, and plays a significant role in 
assessing the risk of cervical spine injuries. Chen et  al 
considered the TPR was a useful radiological parameter 
that alerted surgeon to patients with higher risk of spi-
nal cord-type cervical spine diseases, enabling personal-
ized decompression surgery [8]. Yue et  al suggested the 
TPR can be used to predict which cervical spine disease 
patients were more likely to require decompression, 
facilitating closer follow-up by physicians [28]. Nikolaus 
Aebli et al proposed that a TPR less than 0.7 can be used 
to predict the risk of acute cervical spinal cord injury fol-
lowing minor cervical spine injuries [29]. Additionally, 
in patients with TPR below normal values, the posterior 
cervical spine screw insertion is more challenging due to 
the smaller size of the lamina and lateral mass. The TPR 
is also the most commonly used method for diagnosing 
DCSS, because it eliminates the problem of magnifica-
tion of the spine on X-rays and is cheaper compared to 
CT or MRI. However, previous studies did not yielded 
consistent results regarding the standard values for DCSS 
using the TPR. Therefore, it is crucial to objectively and 
accurately measure anatomical parameters of the cervical 
spine and establish the TPR range in asymptomatic indi-
viduals for clinical diagnosis and prognosis evaluation of 
cervical spine diseases.

Previous results indicated cervical spondylotic mye-
lopathy was more likely to be induced when the TPR was 
less than 0.80 [30]. David Ezra et  al demonstrated that 
using a TPR less than 0.80 as the standard for DCSS was 
not applicable to all populations [31]. However, this study 
was conducted on American athletic subjects, so these 
standards may not have absolute applicability in other 
ethnicities. The present study utilized a large sample with 
age ranging from 18 to 87 years, which provided the reli-
ability of the reference values of DCSS diagnosis. The 
present results also demonstrated that there were differ-
ent SDD changes from C2 to C7, the maximum SDD at 
C2, the minimum SDD at C4, a gradual decrease in SDD 
from C2 to C4, and a slight increase at C6 and C7, which 
were consistent with previous reports [5, 6, 8, 27, 28, 
30, 31], those trends may be related to the fact that C4 

Table 6 Alignment of model predictions with surgeon R1 and 
inter-surgeon agreement

MAE were expressed as the mean ± SD. Model was trained exclusively on 
annotations from surgeon R1; R2 and R3 annotations were used only for testing

R1‑model (MAE) R1‑R2 (MAE) R1‑R3 (MAE)

C2 0.02 ± 0.11 0.20 ± 0.17 0.19 ± 0.14

C3 0.02 ± 0.08 0.16 ± 0.14 0.15 ± 0.13

C4 0.02 ± 0.07 0.17 ± 0.16 0.17 ± 0.16

C5 0.01 ± 0.07 0.17 ± 0.14 0.16 ± 0.13

C6 < 0.01 0.16 ± 0.13 0.16 ± 0.13

C7 0.01 ± 0.09 0.16 ± 0.12 0.16 ± 0.13

Mean 0.01 ± 0.08 0.17 ± 0.14 0.17 ± 0.14

Accuracy 84.1% 57.3% 56.7%



Page 10 of 11Wu et al. BMC Musculoskeletal Disorders          (2025) 26:405 

cervical vertebra contributes the most of overall range of 
motion in daily activities [3]. Most importantly, the pre-
sent results indicated DCSS can be diagnosed from cervi-
cal X-ray when the TPR were less than 0.77 at C3, C4 less 
than 0.73, C5 less than 0.76, C6 less than 0.77 and C7 less 
than 0.73.

While our study utilized a large outpatient cohort, poten-
tial selection bias exists due to the exclusion of asympto-
matic individuals from physical examination centers. To 
mitigate this, future work will incorporate multi-center 
data, including healthy populations from community 
health screenings. This study has also three key limita-
tions. Firstly, the model was trained solely on annotations 
from a single senior surgeon (R1). While this ensures con-
sistency with R1’s clinical expertise, it may inherit subjec-
tive biases inherent to individual annotators. The lower 
agreement between the model and junior surgeons (R2/
R3) does not imply inferior performance by the surgeons, 
but rather highlights the need for multi-expert consensus 
in training data to improve generalizability. Future studies 
will integrate annotations from multiple experts. Secondly, 
current analysis is limited to X-rays, multimodal fusion 
(combining X-rays with CT/MRI using attention-based 
fusion networks to improve diagnostic accuracy) and lon-
gitudinal study (A 5-year follow-up plan is underway to 
track DCSS progression in model-diagnosed patients) are 
needed for comprehensive assessment in the future stud-
ies. Thirdly, although our study compared the results with 
those of doctors’ measurements, it did not compare with 
other existing relevant measurement models. the compari-
son with other similar deep learning models needs to con-
firm the accuracy and generalization ability of the HRViT 
model in the future studies.

Conclusions
We have developed a deep learning-based model for 
automated measurement of the TPR on cervical lateral 
radiographs to diagnose DCSS, demonstrating perfor-
mance comparable to clinical senior doctors. Addition-
ally, based on the parameters of the dataset, we have 
established the TPR distribution of the each cervical 
segment in asymptomatic Chinese individuals, as well 
as the standard values for diagnosing DCSS in different 
segments of the cervical spine in Chinese individuals. 
The present model will automatically generate parameter 
measurement reports, facilitating clinical diagnosis and 
treatment guidance for physicians and patients, which 
hold great potential for translation in future clinical 
practice.
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