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Abstract
Background  Tibial intramedullary nailing (IMN) represents a standard treatment for fractures of the tibial shaft. 
Nevertheless, accurately predicting the appropriate nail length prior to surgery remains a challenging endeavour. 
Conventional techniques frequently depend on data obtained intraoperatively, which may prolong surgical time and 
elevate radiation exposure. This study employs anthropometric measurements to evaluate and contrast the efficacy 
of machine learning (ML) models in predicting tibial IMN length.

Methods  A retrospective analysis was conducted on 163 patients who had undergone tibial IMN. Anthropometric 
data were collected, including the subject’s height, shoe size, olecranon-to-5th metacarpal distance (OM), and tibial 
tuberosity-to-medial malleolus distance (TTMM). Four ML models, namely linear regression, random forest, decision 
tree, and XGBoost, were employed for the purpose of predicting tibial IMN length. The performance of the models 
was evaluated using the mean squared error (MSE) and the R-squared values.

Results  The linear regression model demonstrated superior performance compared to the random forest, decision 
tree, and XGBoost models, with an R-squared value of 0.89, an MSE of 117.53, and a root mean squared error (RMSE) 
of 10.84 mm. The strongest correlation with IMN length was demonstrated by TTMM (r = 0.911), followed by height 
(r = 0.899) and OM (r = 0.811). Furthermore, TTMM provided the greatest contribution to prediction accuracy, thereby 
supporting its use as a reliable predictor in clinical settings. The correlation between shoe size and the dependent 
variable was weaker (r = 0.823), and the inclusion of shoe size in the model negatively impacted the prediction 
accuracy. Despite their ability to handle non-linear relationships, the random forest and XGBoost models yielded 
higher MSE values, indicating limited improvement over linear regression. These findings underscore the linear nature 
of the relationship between anthropometric variables and IMN length, with linear regression offering the most reliable 
predictions.

Conclusion  Combining anthropometric measurements with ML models, particularly linear regression, effectively 
predicts IMN length. This approach can streamline preoperative planning by reducing intraoperative measurements 
and minimizing surgery time and radiation exposure. Further validation with larger datasets is necessary to confirm 
these findings across diverse populations.
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Introduction
Tibial intramedullary nailing (IMN) is a well-established 
method for the treatment of tibial shaft fractures, offer-
ing several key advantages. These include minimal inva-
siveness, stable fixation, and early mobilization [1]. 
Nevertheless, accurately determining the optimal nail 
length remains a significant challenge in the context of 
IMN surgery [2]. It has been assumed that traditional 
intraoperative techniques, such as the use of radiographic 
rulers and guidewires, are reliable for the selection of the 
appropriate nail length. However, these methods have 
been shown to increase both operative time and radiation 
exposure [3]. An incorrect selection of nail length can 
result in complications such as malalignment, joint irrita-
tion and the necessity for revision surgery. It is therefore 
imperative to develop reliable preoperative methods for 
predicting the optimal tibial IMN length [4].

Recent studies have indicated a strong correlation 
between the precise measurement of IMN length and 
a range of body parameters, including patient height, 
shoe size, and specific lower limb dimensions [2, 5–8]. 
A number of studies have identified notable correla-
tions between these measurements and the selection of 
an appropriate IMN length, underscoring the value of 
tailored measurement techniques [2, 5–9]. Nevertheless, 
the accurate prediction of nail length presents a signifi-
cant challenge due to the inherent variability in patient 
anatomy. This complexity makes the standardization of 
procedures a challenging endeavour and necessitates the 
utilisation of bespoke approaches to achieve optimal sur-
gical outcomes.

The advent of ML has led to a transformation in the 
field of clinical decision-making in orthopaedics. The 
application of ML algorithms, including those such as 
linear regression, random forests, decision trees, and 
XGBoost, has demonstrated considerable potential in 
the prediction of outcomes through the analysis of large 
datasets and the identification of complex patterns [10, 
11]. These models may prove significant in predicting 
the length of IMN based on patient-specific measure-
ments, potentially offering a data-driven and person-
alised approach to surgical planning. The simplicity and 
interpretability of linear regression models are among 
their most valuable attributes. In contrast, more complex 
models, such as random forests and XGBoost, demon-
strate robust performance by capturing non-linear rela-
tionships and reducing overfitting, particularly in the 
context of smaller datasets [10, 11].

This study aims to evaluate and compare the perfor-
mance of four ML models—linear regression, random 
forest, decision tree, and XGBoost—in predicting tibial 
IMN length based on anthropometric measurements. 
We hypothesize that ML models utilizing preoperative 
anthropometric measurements offer a reliable method 

for predicting tibial IMN length, potentially reducing 
reliance on intraoperative estimations. This research 
not only explores the potential of ML to enhance surgi-
cal planning but also addresses a significant gap in the 
existing literature by providing a comparative analysis of 
the predictive capabilities of different models. A better 
understanding of these relationships may improve pre-
operative planning and help reduce complications asso-
ciated with inaccurate nail length selection, ultimately 
improving patient outcomes.

Materials and methods
Study design
This retrospective study analyzed data from patients who 
underwent interlocking tibial IMN treatment for tibial 
shaft fractures between 1 January 2018 and 30 August 
2024. The data were gathered from two distinct medical 
centers: İzmir Bakırçay University Training and Research 
Hospital and İzmir Democracy University Training and 
Research Hospital. It should be noted that the study was 
approved by the Ethics Committee of İzmir Bakırçay 
University on 2024 (Approval No: 1806/1786) and was 
conducted by the principles outlined in the Declaration 
of Helsinki.

Study population
The inclusion criteria were as follows: patients must be at 
least 18 years of age, have a confirmed diagnosis of tibial 
shaft fracture, have undergone treatment with an inter-
locking IMN, and possess complete clinical and radio-
logical records following the surgery. Conversely, the 
exclusion criteria comprised patients younger than 18 
years, those treated with non-interlocking nails, patients 
with incomplete data sets, inadequate follow-up periods, 
additional pathologies affecting the tibial anatomy (such 
as contractures or joint deformities), and those who had 
undergone revision surgeries or other procedures on the 
tibia.

The initial cohort comprised 376 patients who had 
undergone IMN. Following the application of the afore-
mentioned inclusion and exclusion criteria, 163 patients 
were deemed eligible for inclusion in the final analysis, 
as illustrated in Fig.  1. This rigorous selection process 
was implemented in order to guarantee a uniform study 
population and to establish reliable data for subsequent 
analysis.

Data collection
Anthropometric measurements were obtained from hos-
pital medical records and in-person evaluations using 
standardized measurement tools. The following measure-
ments were collected for each patient:
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 	• Height (cm): Obtained from medical records or 
measured during hospital visits using a stadiometer.

 	• Shoe size (EU): Recorded in European sizes, either 
from hospital files or self-reported by patients during 
clinical visits.

 	• Olecranon-to-5th metacarpal distance (OM, mm): 
This distance was measured with the patient seated, 

arm fully extended, and hand clenched in a fist 
position using a flexible tape (Fig. 2).

 	• Tibial tuberosity-to-medial malleolus distance 
(TTMM, mm): Measured from the unaffected leg 
with the patient seated and fully extended leg using a 
flexible tape (Fig. 3).

 	• Tibial intramedullary nail length (mm): The length 
of the tibial IMN used during surgery, retrieved from 
surgical records.

All measurements were taken during face-to-face evalua-
tions to ensure consistency and reliability.

Machine learning models
To predict tibial IMN length, various ML models were 
developed and evaluated, using the collected anthro-
pometric measurements as predictors and tibial IMN 
length as the dependent variable. The following models 
were applied:

 	• Linear Regression: A simple and interpretable 
model that assesses the linear relationship between 
the predictors and the dependent variable.

 	• Random Forest: An ensemble model that constructs 
multiple decision trees and averages their predictions 
to improve accuracy and reduce overfitting. Random 
forests are remarkably robust against overfitting in 
smaller datasets.

 	• Decision Tree: This model predicts the dependent 
variable by learning decision rules from the features, 
which helps it understand non-linear relationships 
between variables.

Fig. 2  Measurement of olecranon-to-5th metacarpal distance (OM)

 

Fig. 1  Flowchart illustrating patient selection and exclusion criteria
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 	• XGBoost: A gradient boosting algorithm that 
sequentially builds models, with each iteration 
learning from the errors of the previous one. 
XGBoost is known for its high accuracy, especially in 
regression tasks.

The dataset was partitioned into a training set (80%) and 
an independent holdout test set (20%) for external valida-
tion, using the train_test_split function from scikit-learn. 
Prior to modelling, all continuous variables were normal-
ized using the StandardScaler function in order to ensure 
that the features were on the same scale and to optimize 
model performance. The scaler was fitted exclusively on 
the training data and subsequently applied to the test 
data to prevent data leakage and ensure unbiased per-
formance evaluation. The models were trained on the 
training set, and their performance on the test set was 
primarily evaluated using mean squared error (MSE), 
which penalizes larger errors more severely and is widely 
used for regression tasks. In addition, root mean squared 
error (RMSE) was calculated to enhance interpretability, 
as it is expressed in the same unit (millimeters, mm) as 
the target variable. RMSE provides a clinically meaning-
ful estimation of the average prediction error and com-
plements MSE by offering a more intuitive understanding 
of model performance. In addition to the holdout test set 

evaluation, 10-fold cross-validation was conducted to 
improve the robustness and generalizability of the model 
performance assessment. No hyperparameter tuning was 
performed for any of the ML models; all models were 
trained using their default parameters as implemented in 
the scikit-learn and XGBoost libraries. This approach was 
chosen to ensure comparability and minimize overfitting, 
especially given the moderate sample size.

Statistical analysis
All statistical analyses were conducted using Python 
(version 3.12.6) with the SciPy (v1.14.1) and statsmod-
els (v0.14.3) libraries. The normality of residuals from 
all ML models was assessed using the Shapiro–Wilk 
test. A p-value < 0.05 was considered statistically signifi-
cant. Additionally, 95% confidence intervals (CIs) for the 
regression coefficients in the linear regression model 
were calculated to evaluate the precision and reliability 
of its estimates. These statistical procedures were imple-
mented to ensure the robustness of model assumptions 
and enhance the interpretability of the findings.

Results
Descriptive statistics
The study included 163 patients who underwent IMN for 
tibial shaft fractures. Table 1 summarizes descriptive sta-
tistics for the study variables.

Correlation analysis
Pearson correlation analysis revealed significant posi-
tive associations between tibial IMN length and all 
independent variables. The strongest correlation was 
found between TTMM and IMN length (r = 0.911), fol-
lowed by height (r = 0.899), shoe size (r = 0.823), and OM 
(r = 0.811). All correlations were statistically significant 
(p < 0.001). The correlation coefficients for these variables 
are presented in Table 2.

Table 1  Descriptive statistics of the study variables
Variable Mean ± SD Min Max
Tibial IMN Length (mm) 338.65 ± 33.93 280 420
Height (cm) 172.52 ± 10.26 154 198
Shoe Size (EU) 40.70 ± 2.12 36 47
TTMM (mm) 356.40 ± 35.85 280 442
OM (mm) 384.40 ± 75.88 251 568

Table 2  Pearson correlation coefficients for tibial IMN length 
and independent variables
Variable Pearson Correlation (r) p-value
Height (cm) 0.899 < 0.001
Shoe Size (EU) 0.823 < 0.001
TTMM (mm) 0.911 < 0.001
OM (mm) 0.811 < 0.001

Fig. 3  Measurement of tibial tuberosity-to-medial malleolus distance 
(TTMM)
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Linear regression model results
A multiple linear regression model was developed to 
estimate IMN length based on anthropometric param-
eters. The model explained 89.45% of the variance in 
IMN length (R² = 0.8945), indicating a strong predictive 
relationship between the predictors and the outcome 
variable. The MSE was 117.53, representing the average 
squared difference between predicted and actual values. 
The RMSE was 10.84 mm, providing a clinically interpre-
table measure of prediction error. Regression coefficients 
for each variable are presented in Table 3.

The regression analysis identified height, TTMM, and 
OM as significant positive predictors of IMN length, 
whereas shoe size exhibited a negative but statistically 
non-significant association. The high R² value supports 
the utility of anthropometric measurements for accurate 
preoperative estimation of IMN length. To assess the pre-
cision and statistical reliability of the model estimates, 
95% CIs were computed and are presented in Table 4.

Predictors such as height, TTMM, and OM demon-
strated statistically significant effects, as their CIs did not 
include zero. This finding supports the robustness of the 
regression model and underscores the strong associa-
tion between these anthropometric parameters and IMN 
length.

For comprehensive evaluation of model performance 
and statistical inference, regression coefficients (Table 3) 
were estimated using the scikit-learn library, while 95% 
CIs (Table  4) were derived using the statsmodels pack-
age. The differences between the coefficients reported 
in the two tables are primarily due to the standardiza-
tion of predictor variables within the modeling pipeline. 
Despite this methodological difference, both approaches 
consistently identified the same significant predictors. 
This dual-method strategy was deliberately employed to 
ensure both accurate model training and rigorous statis-
tical interpretation.

Residual analysis of linear regression model
Residual analysis was conducted to evaluate the accu-
racy and distributional assumptions of the linear 
regression model. The minimum residual (i.e., the dif-
ference between actual and predicted IMN lengths) was 
− 33.63  mm, and the maximum residual was 11.58  mm. 
The mean residual was − 3.56  mm, indicating that the 
model tended to slightly underestimate actual values on 
average. The standard deviation (SD) of the residuals 
was 10.24  mm, reflecting an acceptable level of predic-
tion variability. To assess the normality of residuals, the 
Shapiro–Wilk test was performed. The test statistic was 
0.9934 with a p-value of 0.667, indicating no significant 
deviation from normality (p > 0.05). This finding supports 
the assumption of normally distributed residuals, which 

is a key prerequisite for the validity of linear regression 
inference.

Residual analysis of other machine learning models
Residual analyses were also conducted for the Random 
Forest, Decision Tree, and XGBoost models to evalu-
ate their predictive accuracy and error distributions. 
The mean residuals and SDs were 2.24 ± 12.83  mm for 
Random Forest, 1.21 ± 15.52 mm for Decision Tree, and 
2.70 ± 14.41 mm for XGBoost. The Shapiro–Wilk test was 
used to assess the normality of residuals. The residuals 
of the XGBoost model did not significantly deviate from 
normality (p = 0.5380), supporting the assumption of nor-
mally distributed errors. In contrast, the residuals of the 
Random Forest (p = 0.0187) and Decision Tree (p < 0.001) 
models significantly deviated from normality, suggesting 
potential violations of distributional assumptions in these 
models.

Model evaluation
The F-statistic for the linear regression model was 248.0, 
with a p-value of 5.45e-67, indicating that the model 
as a whole was statistically significant and exhibited 
a good overall fit. A comparative summary of perfor-
mance metrics for all ML models, including R², MSE, 
and RMSE, is provided in Table  5. These metrics dem-
onstrate that the linear regression model achieved the 
highest predictive accuracy, with an R² of 0.8945 and the 
lowest RMSE (10.84  mm), followed by Random Forest 
(RMSE = 13.00 mm), XGBoost (14.63 mm), and Decision 
Tree (15.57 mm). Lower MSE and RMSE values indicate 
better model performance, and RMSE is expressed in 
mm to enhance clinical interpretability.

Table 3  Regression coefficients for IMN length
Predictor Coef-

ficient 
(β)

Std. 
Error

t-value p-value Interpretation

Intercept 340.31 1.165 292.10 0.000 -
Height (cm) 14.33 4.992 2.870 0.005 Positive impact
Shoe Size 
(EU)

-5.37 3.132 -1.715 0.089 Negative 
impact

TTMM 
(mm)

8.33 1.875 4.440 0.000 Positive impact

OM (mm) 15.11 4.293 3.519 0.001 Positive impact

Table 4  95% CIs for regression coefficients
Predictor Coefficient (β) 95% CI
Height (cm) 1.1043 [0.267, 1.941]
Shoe Size (EU) -1.6455 [-4.096, 0.805]
TTMM (mm) 0.4562 [0.248, 0.665]
OM (mm) 0.1146 [0.073, 0.157]
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Random forest results
The Random Forest regression model yielded an MSE 
of 169.01 and an R² value of 0.8482. The RMSE was 
13.00  mm, indicating a moderate level of average pre-
diction error. Although Random Forest algorithms are 
generally effective in capturing complex, nonlinear rela-
tionships, the model demonstrated lower predictive 
accuracy than linear regression in this context, as evi-
denced by its higher MSE and lower R². These findings 
suggest that the simpler linear regression model outper-
formed Random Forest in estimating IMN length within 
this dataset.

Decision tree results
The Decision Tree regression model yielded an MSE 
of 242.42 and an R² value of 0.782. The RMSE was 
15.57  mm, indicating a relatively higher average predic-
tion error. These results suggest that the Decision Tree 
model underperformed compared to both the linear 
regression and Random Forest models, as evidenced by 
its higher MSE and lower R². Although decision trees are 
useful for capturing complex relationships, in this study, 
the simpler linear regression and Random Forest models 
provided more accurate predictions of IMN length.

XGBoost results
The XGBoost regression model yielded an MSE of 213.99 
and an R² value of 0.807, indicating better performance 
than the Decision Tree model but lower predictive accu-
racy compared to the linear regression and Random 
Forest models. The RMSE was 14.63  mm, reflecting a 
moderately high level of average prediction error. Despite 
its advanced capabilities in handling complex data struc-
tures, the XGBoost model was less effective in this study 
than simpler models such as linear regression when pre-
dicting IMN length.

Cross-validation results
To improve the reliability of model evaluation, 10-fold 
cross-validation was performed on the full dataset. The 
mean R² scores and corresponding SDs across folds 
were 0.784 ± 0.144 for the linear regression model, 
0.796 ± 0.104 for the Random Forest, 0.661 ± 0.175 for the 
Decision Tree, and 0.748 ± 0.133 for the XGBoost model. 

These findings support the consistency of model perfor-
mance across different data subsets. Among all models, 
the Random Forest Regressor achieved the highest aver-
age R² score, suggesting superior generalization ability, 
followed closely by linear regression and XGBoost.

Discussion
In this study, we aimed to predict the length of tibial IMN 
using anthropometric measurements by applying and 
comparing various ML models, including linear regres-
sion, random forest, decision tree, and XGBoost. The 
findings of this study offer invaluable insights into the 
manner in which these models predict IMN length based 
on patient-specific characteristics.

This study makes a pioneering contribution to the lit-
erature in that it calculates the size of the IMN based 
on anthropometric data. There is a paucity of studies in 
which artificial intelligence (AI) and ML models have 
been employed to ascertain implant components in pro-
cedures such as knee, hip, and shoulder arthroplasty, 
which represent some of the most prevalent surgical 
practices in orthopaedics [12–18]. A systematic review by 
Salman et al. [14] demonstrated that AI models are highly 
accurate in estimating total knee arthroplasty compo-
nent dimensions. The accuracy rates for AI models in 
estimating femoral component dimensions ranged from 
88.3 to 99.7%, while the accuracy rates for tibial compo-
nent dimensions ranged from 90 to 99.9%. Furthermore, 
the deviations were limited to just one size. Similarly, the 
present study achieved high accuracy in predicting tibial 
IMN length using anthropometric data, with the model 
accounting for 89.45% of the variability in IMN length (R² 
= 0.8945). This illustrates a robust correlation between 
the input variables and the length of the intramedul-
lary nail. As the number of studies that employ ML for 
the purpose of implant dimension prediction increases, 
it is anticipated that the accuracy and reliability of these 
models will improve, thereby further enhancing their 
utility in the context of preoperative planning. The inte-
gration of AI into surgical workflows has the potential to 
significantly enhance clinical decision-making, minimise 
human error and, ultimately, improve patient outcomes.

The linear regression model demonstrated superior 
performance compared to more complex models, such 
as random forest and XGBoost, as evidenced by its 
lower MSE and higher R² values. These results indicate 
that the relationship between the independent variables 
(height, shoe size, TTMM, and OM) and IMN length is 
predominantly linear. Consequently, simpler models such 
as linear regression are more appropriate for this task. It 
is noteworthy that the model explained approximately 
89.45% of the variance in IMN length, which serves to 
emphasise the effectiveness of anthropometric mea-
surements in preoperative planning for tibial fractures. 

Table 5  Comparative performance metrics of ML models for 
predicting tibial IMN length
Model R² MSE RMSE (mm)
Linear Regression 0.8945 117.53 10.84
Random Forest 0.8482 169.01 13.00
Decision Tree 0.7820 242.42 15.57
XGBoost 0.8070 213.99 14.63
Note: R² indicates the proportion of variance in tibial IMN length explained by 
the model. MSE and RMSE reflect prediction error, with lower values indicating 
better performance. RMSE is reported in mm to enhance clinical interpretability
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Furthermore, the RMSE of the linear regression model 
was 10.84 mm, indicating that, on average, the predicted 
IMN length deviated from the actual value by approxi-
mately 1  cm. This unit-consistent metric enhances the 
clinical interpretability of the model and supports its 
potential applicability in real-world surgical planning. 
Clinically, an average deviation of approximately 10 mm 
is generally considered acceptable for tibial IMN length 
prediction, as intramedullary nails are commonly manu-
factured in 20  mm increments. Therefore, an RMSE of 
10.84 mm falls within an acceptable error margin and is 
unlikely to result in clinically significant implant selection 
errors. Combined with the high predictive accuracy of 
the model (R² = 0.8945), these findings confirm that the 
model meets both statistical and clinical thresholds of 
adequacy for preoperative use.

In our study, complex ML models such as Random For-
est and XGBoost—typically known for their superior per-
formance on larger datasets—may have been adversely 
affected by the limited sample size. Acknowledging this 
potential issue, we implemented several methodological 
precautions to minimize the risk of overfitting, including 
10-fold cross-validation, holdout validation, and default 
hyperparameters without any tuning. Nevertheless, our 
findings revealed overfitting, particularly in the Random 
Forest model, which exhibited a high cross-validation R² 
score but a higher RMSE and significant deviation from 
normality in residuals. These observations suggest that 
more straightforward and more interpretable models, 
such as linear regression, may offer more reliable and 
clinically applicable results in small datasets.

The ML models employed in this study enabled the pre-
diction of tibial IMN length using only external anthro-
pometric parameters such as height, TTMM, OM, and 
shoe size, without the need for radiological imaging. This 
approach stands in contrast to conventional preoperative 
planning techniques, which rely heavily on radiographic 
evaluations. For instance, Keltz et al. [3] reported that 
digital templating based on contralateral leg radiographs 
required post hoc adjustment of the selected nail length 
in approximately 28% of cases, underscoring the variabil-
ity and limitations inherent in imaging-based methods.

In comparison, our ML-based linear regression model 
achieved superior predictive performance (R² = 0.8945, 
RMSE = 10.84 mm). In addition to outperforming radio-
graphic techniques, it also exceeded the accuracy of 
traditional anthropometry-based estimation methods. 
Albay and Kaygusuz [2], for example, developed sex-
specific formulas using single anthropometric measures 
such as the knee-to-ankle joint line distance (JJ), tibial 
tuberosity to medial malleolus (TM), tibial tuberosity 
to ankle joint (TA), and OM, with reported R² values of 
0.8284 in males (JJ) and 0.8735 in females (TM). Unlike 
these single-variable approaches, our model integrated 

multiple anthropometric predictors, thereby improving 
both estimation accuracy and clinical utility.

Further supporting these findings, Galbraith et al. [4] 
compared various radiographic and anthropometric 
methods for IMN length estimation and reported the 
highest accuracy for AP scanograms (100%) and intra-
operative ruler/guidewire measurements (94%). In con-
trast, they observed particularly low accuracy rates for 
isolated anthropometric parameters such as body height 
(13%) and TM (38%). These results highlight the limita-
tions of single-measure techniques in preoperative plan-
ning. Similarly, Issac et al. [5] reported that even the most 
accurate traditional anthropometric method—TA plus 
11  mm—yielded 81% accuracy, with other techniques 
performing notably lower. These approaches often rely on 
fixed offsets and assume linearity, which can limit their 
adaptability. While these radiographic methods dem-
onstrate excellent accuracy under ideal conditions, they 
require specialized equipment, trained personnel, and 
may not always be feasible in time-sensitive or resource-
limited settings. In contrast, our ML-based model offers 
a practical, accessible alternative that maintains a high 
level of predictive performance using only easily obtain-
able anthropometric inputs.

In addition to these quantitative findings, it is also 
important to consider the potential practical value of the 
proposed model. Although intraoperative fluoroscopic 
measurements and preoperative imaging are established 
standard practices for determining IMN length, ML 
models can offer valuable assistance in certain clinical 
scenarios. In pre-hospital settings, emergencies, or facili-
ties with limited imaging capabilities, a rapid and non-
invasive estimation method may support early surgical 
planning and reduce reliance on intraoperative decision-
making. Our model is not intended to replace conven-
tional techniques, but rather to complement them by 
enhancing efficiency and accuracy when standard meth-
ods are unavailable or impractical.

The results demonstrated a robust correlation 
between IMN length and TTMM, height, and OM. 
TTMM demonstrated the highest correlation with 
IMN length (r = 0.911), followed by height (r = 0.899) 
and OM (r = 0.811), which is consistent with the exist-
ing literature that emphasises the significance of lower 
limb dimensions in selecting appropriate IMN length 
[2, 5, 6, 9]. However, shoe size exhibited a weaker cor-
relation (r = 0.823) and negatively impacted the linear 
regression model, indicating that it may not be a reliable 
predictor when used in conjunction with other anthro-
pometric variables. Despite its lack of statistical signifi-
cance in the multivariable model (p = 0.089), shoe size 
was deliberately retained due to its acceptable correla-
tion with IMN length and its contribution to the overall 
generalizability of the model. Its inclusion did not lead 
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to multicollinearity or degrade model performance, as 
reflected by the high R² (0.8945) and clinically acceptable 
RMSE (10.84  mm). Moreover, all anthropometric pre-
dictors—including height, shoe size, TTMM, and OM—
were selected a priori based on clinical relevance and 
prior literature, and evaluated collectively to preserve the 
integrity of the multivariable design. Accordingly, exclud-
ing shoe size could have reduced model robustness, par-
ticularly in diverse patient subgroups.

In a study conducted by Jain et al. [19], five anthropo-
metric measurements were evaluated in 100 patients, 
including the distance from the knee joint to the ankle 
joint (K-A), TTMM, OM, thigh length, and leg length. 
The results of their study were in accordance with our 
findings, with the strongest correlations observed for 
TTMM and OM. Furthermore, they emphasised that 
OM exhibited the highest accuracy due to its ease of pal-
pation, whereas TTMM was more susceptible to inter-
observer variability. Similarly, Hegde et al. [7] reported 
strong correlations between OM and IMN length 
(r = 0.966), indicating that OM may be a reliable alterna-
tive in cases where TTMM measurements are complex, 
such as in obese patients or those with bilateral tibial 
fractures.

Blair [20] additionally investigated the potential of OM 
as a predictor for IMN length, developing a predictive 
formula based on OM measurements. His study cor-
roborated the reliability of OM, particularly in instances 
where TTMM was impractical. The findings of our study 
corroborate those of Blair, indicating that the incorpo-
ration of OM into ML models enhances the accuracy of 
preoperative planning by reducing the impact of human 
error.

In a study conducted by Sharma et al. [9], the useful-
ness of arm length (AL) as a new anthropometric mea-
sure for estimating tibial IMN length was assessed. The 
researchers observed that AL exhibited a slight average 
discrepancy and the most precise agreement limits when 
compared to conventional lower limb measurements, 
including TTMM and knee joint line to medial malleo-
lus (KJL-MM). Although AL demonstrated a robust cor-
relation with tibial nail length, the study substantiated 
that TTMM remained the most dependable predictor 
(r = 0.911) when integrated with a multitude of anthropo-
metric measurements.

One of the significant strengths of our study is the use 
of multiple ML models to predict tibial IMN length based 
on anthropometric measurements. By incorporating a 
variety of variables, such as height, shoe size, TTMM, 
and OM, we were able to provide a comprehensive anal-
ysis of the factors influencing IMN length. Addition-
ally, using ML models allowed us to compare different 
approaches and select the most accurate model, which in 
our case was linear regression, explaining approximately 

89.45% of the variance in IMN length. The comparatively 
lower performance of more complex models such as 
Random Forest and XGBoost was interpreted as a reflec-
tion of the predominantly linear structure of the data-
set, rather than a limitation of feature selection or data 
robustness. All anthropometric variables were selected 
based on prior clinical evidence and literature support. 
While the study revealed strong correlations between 
anthropometric variables and IMN length, it does not 
aim to establish causality. Rather, these associations were 
leveraged for their predictive value within the context 
of preoperative planning, where even proportion-based 
relationships may provide clinically meaningful guidance. 
However, there are some limitations to consider:

1.	 While robust, our dataset was limited to a specific 
patient population undergoing tibial IMN, which 
may impact the generalizability of the findings. The 
model’s clinical applicability is also confined to a 
single surgical context. However, this approach may 
serve as a foundational framework for future studies, 
as similar ML-based models could be adapted for 
implant sizing in other orthopedic procedures, such 
as femoral or humeral nailing or joint arthroplasty.

2.	 The variability in anthropometric measurements, 
particularly shoe size, introduced some 
inconsistencies in prediction accuracy, suggesting 
that certain variables may need more reliable 
predictors across different patient groups.

3.	 Although ML models offer significant advantages, 
further validation with larger datasets and diverse 
populations would be beneficial to confirm the 
applicability of our findings in broader clinical 
settings. Additionally, the absence of external 
validation limits the ability to assess the model’s 
performance in independent patient cohorts.

Conclusion
In the present study, we demonstrated the potential of 
ML models in predicting the length of the tibial IMN 
based on patient-specific measurements. The advantages 
of utilising data-driven techniques to enhance the preci-
sion of preoperative planning were elucidated through a 
comparative analysis of diverse ML methodologies. Our 
findings demonstrated that even relatively simple mod-
els, such as linear regression, can achieve high levels of 
predictive accuracy. The integration of ML models rep-
resents an efficient means of enhancing clinical deci-
sion-making and improving patient outcomes. Further 
research is required to investigate the broader applica-
tions of ML in orthopaedics, with the aim of validating 
and refining predictive models for routine clinical use.
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