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Abstract
Rationale and objectives To establish an automated osteoporosis detection model based on low-dose abdominal 
CT (LDCT). This model combined a deep learning-based automatic segmentation of the proximal femur with a 
radiomics-based bone status classification.

Materials and methods A total of 456 participants were retrospectively included and were divided into a 
development cohort comprising 355 patients, with a 7:3 ratio randomly assigned to the training and validation 
cohorts, and a test cohort comprising 101 patients. The automatic segmentation model for the proximal femur was 
trained using VB-Net. The Dice similarity coefficient (DSC) and volume difference (VD) were employed to evaluate the 
performance of the segmentation model. A three-classification predictive model for assessing bone mineral status 
was constructed utilizing radiomic analysis. The diagnostic performance of the radiomics model was assessed using 
the area under the curve (AUC), sensitivity, and specificity.

Results The automatic segmentation model for the proximal femur demonstrated excellent performance, achieving 
DSC values of 0.975 ± 0.012 and 0.955 ± 0.137 in the validation and test cohorts, respectively. In the test cohort, the 
radiomics model utilizing the random forest (RF) classifier achieved AUC values, sensitivity, and specificity of 0.924 
(95% CI: 0.854–0.967), 0.846 (95% CI: 0.719–0.931), and 0.837 (95% CI: 0.703–0.927) for the identification of normal 
bone mass. For the identification of osteoporosis, the corresponding metrics were 0.960 (95% CI: 0.913-1.000), 0.947 
(95% CI: 0.740–0.999), and 0.963 (95% CI: 0.897–0.992). In the case of osteopenia, the corresponding metrics were 
0.828 (95% CI: 0.747–0.909), 0.767 (95% CI: 0.577–0.901), and 0.746 (95% CI: 0.629–0.842).
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Introduction
Osteoporosis is a systemic bone disease closely associ-
ated with population aging, characterized by decreased 
bone mass and deterioration of the bone microstructure, 
leading to increased bone fragility and a heightened risk 
of fractures [1, 2]. Recent studies predict that the num-
ber of major fragility fractures (wrist, vertebra and hip) 
in China will reach 4.83 million in 2035 and 5.99 million 
in 2050, with a corresponding medical expenditure of 
$25.43 billion [3]. Among these, hip fractures represent a 
significant public health burden for the elderly; approxi-
mately 20% of elderly patients with hip fractures die from 
various complications within one year, and about 50% of 
these patients become disabled [4, 5]. Given that osteo-
porosis is the leading cause of hip fractures [5], there is 
an urgent need to develop timely and effective methods 
for detecting hip osteoporosis.

Bone mineral density (BMD) serves as the principal 
measure of human bone mass and is directly associ-
ated with osteoporosis [1]. Currently, Dual-energy X-ray 
Absorptiometry (DXA) and Quantitative Computed 
Tomography (QCT) are the primary methods employed 
for the clinical assessment of bone density [6, 7]. How-
ever, individuals with osteoporosis often do not exhibit 
clear clinical symptoms until they sustain an osteopo-
rotic fracture, leading to low detection and screening 
rates for the condition. Additionally, DXA employs two-
dimensional imaging, which may lead to false-negative 
results concerning bone hyperplasia due to degenerative 
changes in the hip. Furthermore, the application of QCT 
for measuring BMD necessitates specialized software and 
equipment, along with stringent calibration protocols, 
which restricts its widespread use due to limited acces-
sibility. Consequently, there is an urgent need to identify 
an efficient and straightforward method for screening 
proximal femoral osteoporosis.

Radiomics enhances the accuracy of disease diagnoses 
by extracting various medical imaging features from CT 
images and analyzing the quantitative information they 
contain [8, 9]. This field has been extensively researched 
in degenerative diseases, particularly osteoporosis [10–
12]. Studies have demonstrated that radiomic features 
from hip CT images can accurately predict hip bone 
quality [12, 13]. Furthermore, low-dose abdominal CT 
(LDCT) reduces radiation exposure risks for patients, 
making it a common choice for health check-ups and 
follow-ups for various conditions, while at the same time, 

these images provide valuable information about proxi-
mal femur bone density. The integration of LDCT with 
bone density assessments is a cost-effective approach that 
does not impose additional radiation exposure or finan-
cial burdens on patients. On the other hand, prior stud-
ies on proximal femur segmentation primarily relied on 
manual methods performed by radiologists, contributing 
to an increased workload [12, 14]. Recent research indi-
cates that deep learning-based automatic segmentation 
of the proximal femur can substantially alleviate the man-
ual workload of radiologists, thereby enhancing workflow 
efficiency [15]. However, to our knowledge, few studies 
have applied automatic segmentation models based on 
LDCT and radiomics-based classification models of bone 
quality for the opportunistic screening of osteoporosis.

The purpose of our study is twofold. First, to develop 
a deep learning-based automatic segmentation model for 
the proximal femur using LDCT images, and to evaluate 
its accuracy in segmenting the proximal femur. Second, 
to create a radiomic model based on this automatic seg-
mentation to assess bone status across three categories, 
aiming to provide automatic and accurate opportunistic 
detection for osteoporosis.

Materials and methods
Patient enrollment
The study was conducted in accordance with the Dec-
laration of Helsinki (as revised in 2013). The study was 
approved by the ethics committee/IRB of The First 
Affiliated Hospital of Dalian Medical University (no. PJ-
KS-KY-2023-276) and individual informed consent to 
participate for this retrospective analysis was waived by 
the ethics committee/IRB of The First Affiliated Hospital 
of Dalian Medical University.

We retrospectively screened 695 patients who under-
went LDCT and QCT examinations within one week 
from January 2024 to November 2024. The exclusion 
criteria were as follows: [1] patients with bone metasta-
ses (n = 40) [2], metastasis outside the bone (n = 58) [3], 
hip fracture (n = 42) [4], hip replacement (n = 49), and 
[5] incomplete CT scans (n = 50). Finally, a total of 456 
patients were included in our study. These patients were 
divided into a development cohort consisting of 355 
patients, who were randomly assigned to the training and 
validation cohorts in a 7:3 ratio, and a test cohort com-
prising 101 patients, based on the time of examination. 
The patient selection process is illustrated in Fig. 1. The 

Conclusion A three-classification predictive model combining a deep learning-based automatic segmentation 
of the proximal femur and a radiomics-based bone status classification on LDCT images can be used for the 
opportunistic detection of osteoporosis.
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construction of the auto-segmentation framework, along 
with the extraction of radiomics features, feature selec-
tion, and the development and evaluation of machine 
learning models, was conducted using the uAI Research 
Portal V1.1 (Shanghai United Imaging Intelligence, Co., 
Ltd.), as illustrated in Fig. 2.

CT images
LDCT examinations were conducted using a 256-row 
CT scanner (Revolution CT, GE HealthCare, Milwaukee, 
WI, USA). The scanning range for all patients extended 
from the roof of the diaphragm to 3.5 cm below the lesser 
trochanter, encompassing the entire hip joint. The imag-
ing parameters employed were as follows: tube voltage 
of 120 kVp, automatic tube current, (50–400  mA) with 
noise index set as 14, (which requires approximately 62% 
of the radiation dose for the routine abdominal CT with 
a noise index of 11), tube rotation speed of 0.5 s/r, detec-
tor width of 80 mm, and pitch of 0.992. All raw data were 
reconstructed using a standard kernel, incorporating 60% 

adaptive statistical iterative reconstruction-Veo (ASIR-
V), with a slice thickness and interval of 1.25 mm.

QCT acquisition
All bone density measurements were carried out on a 
specialized QCT Pro workstation (version 6.1, Mindways 
Software, Inc.) using the reconstructed LDCT images. 
Quality control analyses were conducted weekly using 
the asynchronous calibration phantom (Model 4, Mind-
ways Software, Inc.). The system automatically iden-
tifies the region of interest (ROI) in the femoral neck 
and the entire hip, subsequently calculating the BMD 
and T-scores for the femoral neck, trochanter, intertro-
chanter, and the entire hip. According to the diagnos-
tic criteria established by the International Society for 
Clinical Densitometry (ISCD) and the American Col-
lege of Radiology (ACR) [16], osteoporosis is defined as 
a T-score ≤ − 2.5, osteopenia as a T-score < − 1 and > − 2.5, 
and normal BMD as a T-score ≥ − 1. The patients were 
classified into three groups: osteoporosis, osteopenia, 
and normal bone density.

Fig. 1 Flowchart for the study design and patient selection. QCT, quantitative computed tomography
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Image segmentation
To evaluate the reproducibility of manual segmentation 
between observers, we randomly selected 100 patients 
from the training cohort. Two readers, J. He and Y. Liu, 
with 3 and 15 years of experience in musculoskeletal 
radiology, respectively, manually outlined the volumes 
of interest (VOIs) of the proximal femur, extending from 
the femoral head to the level of the lower trochanter, situ-
ated above the horizontal line marking the lower margin 
of the ischial tuberosity. The delineation encompassed 
the entire medullary cavity and cortical bone while care-
fully excluding regions of hyperplastic bone. The Dice 
similarity coefficient (DSC) was employed to assess the 
inter-observer segmentation consistency. If a satisfactory 
agreement was reached, the junior radiologist proceeded 
to complete the remaining cases under the supervision of 
the senior radiologist.

We employed the VB-Net network framework to con-
duct automatic segmentation of the proximal femur. The 
segmentation module in the uAI Research Portal (uRP) 
is capable of automatically delineating ROI from both 
single-modal and multimodal 2D and 3D data. The VB-
Net architecture is one of the partitioning architectures 
implemented for this purpose. The network structure is 
presented in Supplementary Fig. 1. Our proximal femur 
segmentation model consists of two concatenated VB-
Nets. Initially, global sampling is applied in the coarse 
segmentation as model 1, where the image is resampled 
to dimensions of 3 × 3 × 3  mm using B-spline interpola-
tion. Subsequently, in the fine segmentation as model 2, 
the image is resampled to yield a high-resolution local 
image with voxel dimensions of 1 × 1 × 1  mm, sampled 
through a mask. The parameters are set as follows: 

learning rate of 1 × 10− 4, batch size of 8, epochs of 1001, 
and using Adam optimizer. The focal loss function is uti-
lized to monitor the convergence of the training model 
and to optimize the network. DSC and volume difference 
(VD, defined as the manually delineated volume minus 
the automatically segmented volume) were employed to 
evaluate the performance of the segmentation model.

Radiomics feature extraction
All images were normalized using gray discretization 
with a bin width of 25, and the voxel spacing was resa-
mpled to 1 × 1 × 1  mm utilizing the B-spline interpo-
lation method. Subsequently, radiomic features were 
extracted from each ROI, including both original features 
and higher-order features processed using wavelet and 
Laplacian of Gaussian (LoG) filters. Ultimately, a total of 
1,184 two-dimensional (2D) and three-dimensional (3D) 
features were extracted from the original images. These 
features were classified into several categories: first-order 
features, shape features, gray level co-occurrence matrix 
(GLCM) features, gray level size zone matrix (GLSZM) 
features, gray level run length matrix (GLRLM) features, 
gray level distance matrix (GLDM) features, and neigh-
borhood gray tone difference matrix (NGTDM) features.

Features selection and model construction
Recursive Feature Elimination (RFE), Maximum Rele-
vance and Minimum Redundancy (mRMR), and the Least 
Absolute Shrinkage and Selection Operator (LASSO) 
were employed for stepwise feature selection. RFE effec-
tively reduces the dimensionality of image omics param-
eters, addressing the issues of overfitting and enhancing 
classification accuracy. mRMR minimizes redundancy 

Fig. 2 Workflow of this study. RFE, recursive feature elimination; mRMR, minimum-redundancy maximum-relevancy; LASSO, least absolute shrinkage 
and selection operator
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among features while preserving the most relevant attri-
butes related to bone density. Subsequently, LASSO was 
utilized to select the optimal radiomics features. A three-
category classification model was developed using a ran-
dom forest (RF) classifier to simultaneously differentiate 
among normal bone mass, osteoporosis, and osteopenia. 
Receiver operating characteristic (ROC) curves were 
constructed, and the area under the curve (AUC), along 
with sensitivity, specificity, and accuracy, was calculated 
to evaluate the performance of the model.

Statistical analysis
All data were statistically analyzed using SPSS version 
24.0 (SPSS Inc., Chicago, IL, USA), R package (version 
4.2.1) and Medcalc version 20.2 (Medcalc, Ltd, Ostend, 
Belgium), with the Kolmogorov-Smirnov test employed 
to assess data normality. Quantitative data that followed 
a normal distribution are reported as mean ± standard 
deviation (SD), while those that did not meet this cri-
terion are presented as medians (25-75th percentile). 
One-way ANOVA was conducted to compare age and 
radiation dose distributions across the training, valida-
tion, and test cohort, whereas Chi-square tests evalu-
ated gender differences. The effectiveness of radiomics 
in classifying bone status was assessed through ROC 
curves. The AUC, sensitivity, specificity, and accuracy 
were derived from the ROC analysis, and the 95% con-
fidence intervals for these metrics were calculated using 
the Wilson Score method. A P-value of less than 0.05 was 
deemed statistically significant.

Results
Patient baseline information
A total of 456 patients (217 males and 239 females, mean 
age, 67.80 ± 8.18; range, 50–91 years) were included in 
this study. Among the participants, 202 were diagnosed 
with normal bone mass, 175 with osteopenia, and 79 with 
osteoporosis based on the QCT T-score. There were no 
statistically significant differences in the baseline infor-
mation among the training, validation, and test cohorts. 

Table 1 presents the demographic characteristics of study 
participants in these three cohorts. The average radiation 
dose administered to all patients was 241.30 mGy·cm and 
3.62 mSv; detailed information regarding the radiation 
doses is available in the supplementary Table S1.

Automatic segmentation model
The segmentation of the proximal femur revealed a high 
degree of consistency between the two reviewers, with 
a mean DSC of 0.989 ± 0.002. The automatic segmenta-
tion model for the proximal femur exhibited excellent 
performance, achieving DSC values of 0.975 ± 0.012 and 
0.955 ± 0.137 in the validation and test cohorts, respec-
tively. The VD did not exceed 1 cm³, with mean values of 
0.057 (0.022, 0.129) and 0.041 (0.021, 0.068) in the valida-
tion and test cohorts, respectively. Detailed segmentation 
results are presented in Table 2.

Radiomics model
A total of 1184 radiomic features were extracted from the 
VOIs on LDCT images. RFE selected 50 features from 
this initial set. Then 20 features were selected using the 
mRMR method. Ultimately, 15 optimized features were 
selected through LASSO regression and used to establish 
the RF model. The specific features and their correlation 
coefficients are presented in Fig. 3.

In the test cohort, the radiomics model utilizing the RF 
classifier achieved AUC values, sensitivity, specificity, and 
accuracy of 0.924 (95% CI: 0.854–0.967), 0.846, 0.837, 
and 0.842 for the identification of normal bone mass. 
For the identification of osteoporosis, the corresponding 
metrics were 0.960 (95% CI: 0.901–0.989), 0.947, 0.963, 
and 0.960. In the case of osteopenia, the corresponding 
metrics were 0.828 (95% CI: 0.740–0.896), 0.767, 0.746, 
and 0.752. Detailed performance metrics are presented in 
Table 3, while Fig. 4 displays the confusion matrix for the 
model. The ROC curves are presented in Fig. 5.

Table 1 Characteristics of patients in the training, validation and 
test cohorts
Characteristic Training 

cohort
Validation 
cohort

Test cohort P 
value

Age(years) a 67.17 ± 8.52 66.57 ± 8.42 67.65 ± 6.33 0.623
Gender(n) 0.516
Male 121(48.79%) 53(49.53%) 43(42.57%)
Female 127(51.21%) 54(50.47%) 58(57.43%)
Classification(n) 0.376
Normal 105(42.34%) 45(42.06%) 52(51.49%)
Osteopenia 101(40.73%) 44(41.12%) 30(29.70%)
Osteoporosis 42(16.93%) 18(16.82%) 19(18.81%)
a Data are expressed as mean ± standard deviation

Table 2 Detailed results of automatic segmentation accuracy in 
all cohorts
Cohort Group Dice a VD (cm3) b

Validation cohort All patients 0.975 ± 0.012 0.057(0.022,0.129)
Normal 0.979 ± 0.009 0.058(0.022,0.132)
Osteopenia 0.973 ± 0.012 0.058(0.022,0.142)
Osteoporosis 0.966 ± 0.017 0.058(0.023,0.132)

Test cohort All patients 0.955 ± 0.137 0.041(0.021,0.068)
Normal 0.956 ± 0.135 0.042(0.021,0.068)
Osteopenia 0.944 ± 0.178 0.041(0.021,0.068)
Osteoporosis 0.967 ± 0.011 0.047(0.023,0.068)

a Data are expressed as mean ± standard deviation
b Data are expressed as medians (25-75th percentile)

VD volume difference
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Discussion
In this study, we developed a deep learning-based auto-
mated segmentation model for the proximal femur and 
a radiomics-based bone status classification model for 
osteoporosis screening utilizing LDCT images. The 
results demonstrated that the automatic segmentation 
model for the proximal femur exhibited strong discrimi-
native efficiency, with the mean DSC of 0.975 ± 0.012 and 
0.955 ± 0.137 in the validation and test cohorts, respec-
tively. Furthermore, the radiomics model demonstrated 
excellent prediction performance for normal bone den-
sity, osteoporosis, and osteopenia with the AUC of 0.924, 
0.960, 0.828 in the test cohort.

Currently, DXA and QCT are the primary modali-
ties for clinically measuring bone mineral density and 
diagnosing osteoporosis. DXA utilizes two-dimensional 
imaging, which may result in false-negative outcomes 
related to bone hyperplasia due to degenerative changes 
in the patient’s hip [17, 18]. In contrast, the QCT mea-
surements of bone density are unaffected by degenerative 

changes or surrounding soft tissues, and its accuracy 
has been extensively validated in clinical studies [19, 
20]. Nevertheless, the application of QCT for measur-
ing bone mineral density necessitates specialized soft-
ware and equipment, along with rigorous calibration. 
These factors collectively hinder the early screening of 
osteoporosis. In recent years, opportunistic osteoporosis 
screening has been gaining momentum [21], as a single 
CT scan can provide additional bone mineral density 
information while facilitating the diagnosis of the disease, 
thereby achieving comprehensive osteoporosis screening. 
In clinical practice, abdominal CT scans are efficient and 
rapid, serving as a fundamental method for examining 
abdominal diseases. These scans not only facilitate the 
diagnosis of such diseases but also provide information 
on bone density in the hip region. Moreover, radiomics 
enables the extraction of a vast number of features from 
CT images in a high-throughput manner, allowing for 
deeper analysis that assists physicians in making more 
precise diagnoses. Yuan et al. [14] discovered that a 

Table 3 Diagnostic efficiency of the radiomics model in the training, validation and test cohorts
Cohort Category AUC 95% CI Sensitivity 95% CI Specificity 95% CI Accuracy 95% CI
Training Normal 0.936 0.906-0.965 0.865 0.784-0.924 0.888 0.825-0.935 0.879 0.831-0.917

Osteopenia 0.913 0.877-0.949 0.743 0.646-0.824 0.939 0.887-0.972 0.859 0.809-0.900
Osteoporosis 0.961 0.922-1.000 0.905 0.774-0.973 0.961 0.925-0.983 0.951 0.917-0.975

Validation Normal 0.920 0.870-0.970 0.933 0.817-0.986 0.806 0.686-0.896 0.860 0.779-0.919
Osteopenia 0.806 0.722-0.889 0.750 0.597-0.868 0.762 0.638-0.860 0.757 0.665-0.835
Osteoporosis 0.948 0.906-0.990 0.944 0.727-0.999 0.843 0.750-0.911 0.860 0.779-0.919

Test Normal 0.924 0.877-0.971 0.846 0.719-0.931 0.837 0.703-0.927 0.842 0.756-0.907
Osteopenia 0.828 0.747-0.909 0.767 0.577-0.901 0.746 0.629-0.842 0.752 0.657-0.833
Osteoporosis 0.960 0.913-1.000 0.947 0.740-0.999 0.963 0.897-0.992 0.960 0.902-0.989

CI: confidence interval

Fig. 3 Image features and correlation coefficient
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radiomic model based on the proximal femur could iden-
tify abnormalities in bone quantity. Fang et al. [12] com-
bined radiomic models with clinical features to develop 
a nomogram predictive model for osteoporosis. Lim et 
al. [22] reported that the RF model based on abdomen-
pelvic CT exhibited high predictive performance for 
identifying osteoporosis, with AUC values of 0.959 in the 
training cohort and 0.960 in the testing cohort. However, 
these studies have predominantly focused on conven-
tional abdominal CT images for osteoporosis predic-
tion. With growing health awareness, low-dose CT scan 
technology has gained significant attention. Studies have 

demonstrated that low-dose scanning reduces radia-
tion exposure while maintaining comparable diagnostic 
capability to conventional CT [23]. Thus, establishing 
radiomic models on LDCT images for opportunistic 
osteoporosis screening is significant. Furthermore, the 
studies mentioned previously all utilized manual segmen-
tation of the proximal femur, which undoubtedly adds to 
the workload of radiologists.

Deep learning-based convolutional neural networks 
(CNNs) exhibit strong performance in segmenting ver-
tebral bodies and pelvic regions [24–26]. This method 
facilitates osteoporosis screening in large demographic 

Fig. 4 The confusion matrix for the model in the (a) training (b) validation, and (c) test cohorts. a. normal BMD; b. osteoporosis; c. osteopenia
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populations. In our study, we developed an automatic 
segmentation model for the proximal femur based on 
VB-Net. VB-Net is an enhanced version of several clas-
sic CNN architectures that employs a bottleneck struc-
ture in place of the traditional convolutional layers found 
in V-Net (with “B” representing bottleneck), thereby 
reducing the number of parameters and accelerating the 
network’s convergence speed [27, 28]. VB-Net has been 

widely applied in clinical practice [28–30]. Pan et al. [29] 
employed VB-Net for the automatic segmentation of tri-
geminal neuralgia, achieving an average Dice Similarity 
Coefficient (DSC) of 0.74 ± 0.08 in the testing set. Simi-
larly, Wang et al. [31] demonstrated strong performance 
in the automatic segmentation of thoracic vertebrae, 
with average DSC values surpassing 0.93. In our study, 
the VB-Net-based automatic segmentation model for 

Fig. 5 The ROC curves for the prediction of BMD in the (a) training (b) validation, and (c) test cohorts. ROC, receiver operating characteristic; BMD, bone 
mineral density
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the proximal femur displayed exceptional discriminative 
performance, with DSC values exceeding 0.94 in both the 
testing cohort and the test cohort. Moreover, the volume 
difference remained below 1 cm³, aligning with the find-
ings of prior studies.

Our study successfully implemented automatic seg-
mentation to replace manual segmentation in LDCT 
scans, leading to the establishment of a three-classifi-
cation model that simultaneously differentiates among 
normal bone density, osteoporosis, and osteopenia. We 
used RF classifier to develop the radiomics model. The 
RF classifier comprises a collection of decision trees 
constructed on random subsets of the input space. Each 
decision tree is built from a bootstrap sample dataset, 
which randomly selects features for splits, ultimately 
classifying and integrating predictions to enhance accu-
racy and generalization [32]. The RF classifier demon-
strates strong performance in assessing bone density [31, 
33]. In our study, the RF classifier was equally effective 
in distinguishing among the three bone density states. 
The AUC values for distinguishing normal bone density, 
osteoporosis, and bone mass reduction were 0.920, 0.948, 
and 0.806, respectively, in the validation cohort, and 
0.924, 0.960, and 0.828, respectively, in the test cohort. 
However, when distinguishing osteopenia, the AUC value 
slightly decreased, because unlike the single thresholds 
for normal bone density (BMD T-value > -1) and osteo-
porosis (BMD T-value < -2.5), the diagnosis of bone mass 
reduction requires meeting both conditions of T-value 
greater than − 2.5 and less than − 1 simultaneously. This 
dual threshold complicates model learning and increases 
the likelihood of classification errors. Nonetheless, in 
our study, the AUC value for distinguishing osteopenia 
remained above 0.80 in the test cohorts, indicating a high 
level of efficacy.

However, this study presents certain limitations. Firstly, 
this was a single-center investigation, with all CT scans 
conducted on the same CT machine. Further multi-
center, large-sample external validation is required to 
support the model’s robustness. Additionally, this study 
exclusively extracted radiomics features from the proxi-
mal femur. Future research will integrate clinical data to 
develop a combined model that further enhances diag-
nostic efficacy and validates the model’s generalizability. 
Furthermore, our study has not yet developed a model 
based on diagnostic physicians or an AI-assisted model 
for their benefit. Future research will investigate the effi-
cacy of radiomics models in supporting physician deci-
sion-making in diagnosis.

In conclusion, our research findings provide prelimi-
nary evidence that combining deep learning automatic 
segmentation models with radiomics models can facili-
tate opportunistic screening for osteoporosis of the prox-
imal femur in LDCT scans.
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