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Abstract 

Background Measurement of Cobb angle in the frontal plane from radiographs is the gold standard of quantify‑
ing spinal deformity in adolescent idiopathic scoliosis (AIS). As a radiation free alternative, ultrasonography (USG) 
for quantitative measurement of frontal cobb angles has been reported. However, a systematic review and meta‑
analysis on the reliability of ultrasound comparing with the gold standard have not yet been reported.

Objectives This systematic review and meta‑analysis aimed to evaluate (1) the reliability of ultrasound imag‑
ing compared with radiographs in measuring frontal cobb angle for screening or monitoring in AIS patients; (2) 
whether the performance of USG differ when using different anatomical landmarks for measurement of frontal cobb 
angles.

Methods Systematic search was performed on MEDLINE, EMBASE, CINAHL, and CENTRAL databases for relevant 
studies. QUADAS‑2 was adopted for quality assessment. The intra‑ and inter‑rater reliability of ultrasound measure‑
ment in terms of intra‑class correlation coefficient (ICC) was recorded. Mean Absolute Difference (MAD) and Pearson 
correlation coefficients between frontal cobb angle measured from USG and radiographic measurements, were 
extracted with meta‑analysis performed.

Results and discussion Nineteen studies were included with a total of 2318 patients. The risk of bias of included 
studies were unclear or high. Pooled MAD of frontal cobb angle measured between USG and radiography was 4.02 
degrees (95% CI: 3.28–4.76) with a pooled correlation coefficient of 0.91 (95% CI: 0.87–0.93). Subgroup analyses show 
that pooled correlation was > 0.87 across using various USG landmarks for measurement of frontal cobb angles. There 
was a high level of heterogeneity between results of the included studies with  I2 > 90%. Potential sources of hetero‑
geneity include curve severity, curve types, location of apex, scanning postures, patient demographics, equipment, 
and operator experience. Despite being the “gold standard”, intrinsic errors in quantifying spinal deformities with radi‑
ographs may also be a source of inconsistency.
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Conclusion The current systematic review indicated that there is evidence in favor of using USG for quantitative eval‑
uation of frontal cobb angle in AIS. However, the quality of evidence is low due to high risk of bias and heterogeneity 
between existing studies. Current literature is insufficient to support the use of USG as a screening and/or follow‑up 
method for AIS. Further investigation addressing the limitations identified in this review is required before USG could 
be adapted for further clinical use.

Keywords Scoliosis, Ultrasound, Adolescent Idiopathic Scoliosis

Introduction
Measurement of Cobb angle in the frontal plane from 
radiographs is the gold standard of quantifying spinal 
deformity in adolescent idiopathic scoliosis (AIS). How-
ever, radiation from repeated radiography poses health 
concerns for patients [1, 2]. To reduce radiation hazards, 
alternative imaging methods have been investigated for 
quantitative spinal assessment [3]. Among these imag-
ing modalities, ultrasound imaging carries significant 
advantages of being a well-established, radiation-free, 
cost-effective, and portable method capable of dynamic 
scanning. As such, the application of ultrasound imaging 
in musculoskeletal diagnostics has gained considerable 
attention over the past decade [4–7].

As the cortical surface of bone strongly reflects ultra-
sound waves to generate a bony shadow in B-mode 
images, ultrasound imaging can be used to detect the 
posterior arch of the spine, and display the rotatory posi-
tion of laminae and transverse processes for the measure-
ment of vertebral rotation [8–11]. With the development 
of freehand three-dimensional ultrasound imaging sys-
tems that combine conventional B-mode images with 
position sensors for a three-dimensional reconstruction 
of full spine images, the limitation of a previously two-
dimensional image can be overcome, which is crucial to 
analyzing the three-dimensional anatomy of each spine 
[12, 13]. The validity and reliability of ultrasound evalu-
ation based on the anatomical landmarks of spinous pro-
cesses (SP) [5, 6], transverse processes (TP) [5, 12], and 
laminae [10, 14] for ultrasound measurement of spinal 
curvatures in the coronal, sagittal, and transverse planes 
have been reported in both in vitro [15–20] and in vivo 
studies [5, 6, 14, 21, 22] (Figs.  1, 2 and 3) [23]. Despite 
promising results, many of the three-dimensional ultra-
sound imaging systems were experimental prototypes 
that were not optimized for large-scale clinical applica-
tion [15–18, 24, 25]. In  vitro results are deemed to be 
more accurate than in  vivo measurements, as patients’ 
posture was not taken into account in in vitro studies [12, 
18]. Cadaveric bony landmarks, particularly the laminae, 
are also much more easily identified on ultrasound imag-
ing when compared with that for living subjects, espe-
cially for those with a high body mass index (BMI) [11, 
26]. To evaluate the use of ultrasound imaging for living 

subjects, a number of in  vivo studies have been con-
ducted [5, 6, 14, 21, 22]. Nevertheless, ultrasound imag-
ing for scoliosis assessment is still in a developmental 
stage [6]. No conclusive statement has yet been drawn 
regarding how ultrasound imaging can serve as an alter-
native imaging modality for spinal evaluation in an accu-
rate and reliable manner to minimize radiation exposure 
in adolescents. In addition, it remained controversial 
regarding which anatomical landmarks could provide the 
best estimation of frontal cobb angles [5, 27].

We therefore carried out a systematic review with 
meta-analysis to evaluate (1) the intra- and inter-rater 
reliability of ultrasound measurement and its validity in 
terms of correlation and mean absolute difference (MAD) 
with the gold standard of radiological frontal plane Cobb 

Fig. 1 Spinous process angles (SPA) measurement on an ultrasound 
image
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angle in measuring spinal deformity in AIS patients; (2) 
whether the correlation of ultrasonography (USG) with 
radiological frontal Cobb angle differed when using dif-
ferent anatomical landmarks for measurement of spinal 
curvatures.

Materials and methods
Information sources and searching strategy
Relevant studies that involved ultrasound imaging for 
quantitative assessment of the spine were searched from 
four databases, namely MEDLINE, EMBASE, CINAHL, 
and Cochrane Library (CENTRAL) databases. The Pre-
ferred Reporting Items for Systematic Reviews and 
Meta-Analyses for Diagnostic Test Accuracy studies 
(PRISMA-DTA) statement was used as guidelines in 
the performance of the systematic review. The search 
was limited to English publications up to 31 December 
2023. Specific searching strategies adapted for each data-
base were listed in Appendix I. The reference lists of all 
included studies were also examined for additional rel-
evant studies.

Selection of studies
Articles were included if they met the following criteria:

(1) Clinical trials, observational studies, or diagnos-
tic accuracy studies, which reported on the error 
AND/OR correlation between ultrasound imag-
ing and radiographic measurement of frontal cobb 
angles in patients with adolescent idiopathic scolio-
sis (AIS)

(2) Full publication in a peer-reviewed scientific jour-
nal

The exclusion criteria were:

(1) Invitro experiments, phantom studies, or pilot stud-
ies involving < 10 patients

(2) Non-adolescent idiopathic scoliosis subjects
(3) Application of ultrasound imaging other than quan-

tification of frontal cobb angles, for example, mus-
cle quantification, skeletal maturity assessment, 
bone quality measurement, spinal flexibility meas-
urement, brace casting, orthotic design, surgical 
related procedures like anesthesia, operative guid-
ance, or imaging for magnetically controlled grow-
ing rods

(4) Review articles, editorials, letters, comments, case 
reports, or conference abstracts

Fig. 2 Center of lamina (COL) method for measurement of coronal curvatures and axial vertebral rotation on reconstructed 3D ultrasound 
images. Adopted with permission under Creative Commons Attribution License “Three‑dimensional Ultrasonography Could be a Potential 
Non‑ionizing Tool to Evaluate Vertebral Rotation of Subjects with Adolescent Idiopathic Scoliosis” by Lee et al. [23]. a Sagittal plane. bCoronal plane. 
Corresponding transverse plane at: c T8 level. d L1 level. e S1 level. The green dotted lines join the laminae at the 3 above mentioned levels
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(5) Non-English studies

Studies from the systematic search were merged in 
EndNote X9 (Thomson, New York), with duplicates 
removed. Application of exclusion and inclusion criteria 
was performed by screening the titles and abstracts, fol-
lowed by retrieval of full texts of included studies. Two 
reviewers (JHY, JCL) independently screened all the 
titles and abstracts, and reviewed the identified studies 
for inclusion. Disagreements were resolved by consen-
sus between the 2 reviewers. A third reviewer (KGY) was 
available to resolve further disagreements.

Quality assessment
Risk of bias and concerns regarding applicability of each 
included study were evaluated using the Quality Assess-
ment of Diagnostic Studies-2 (QUADAS-2) instrument 
(Appendix II) [28]. Radiographic measurement was des-
ignated as the “reference standard” and ultrasound meas-
urement was defined as the “index test”. The assessment 
of study quality was performed in a standardized manner 
independently by two reviewers (JHY, JCL). Disagree-
ments were resolved by consensus between the 2 review-
ers. A third reviewer (KGY) was available to resolve 
further disagreements.

Data extraction and meta‑analysis
The intra- and inter-rater reliability of ultrasound meas-
urement in terms of intra-class correlation coefficient 
(ICC) was recorded. If more than one ICC value was 
reported for different raters or per different scans in the 
articles, the lowest value was recorded. MAD and Pear-
son correlation coefficients (r) between ultrasound imag-
ing and radiographic measurement were extracted and 
reanalyzed to obtain the pooled correlation and 95% con-
fidence intervals (CIs) using the random effects model of 
meta-analysis and presented as a forest plot. If more than 
one correlation coefficient value was reported for various 
curve location, they were considered independently. Het-
erogeneity across studies was tested by the inconsistency 
index  (I2) [29]. Two subgroup analyses were performed 
according to the ultrasound measurement protocols 
adopted, namely the spinous process method, transverse 
processes (TP) method, and center of lamina (COL) 
method.

MedCalc® Statistical Software version 20.305 (Med-
Calc Software Ltd, Ostend, Belgium) was used. p < 0.05 
was considered statistically significant.

Results
Literature search and selection of studies
Five hundred seventy-nine studies were identified after 
removal of duplicates, of which 398 studies were initially 
excluded because of non-relevance (Fig.  4). 181 poten-
tially eligible studies were examined in full text. Even-
tually, 19 articles met the selection criteria and were 
included for meta-analysis [5, 6, 8, 11–14, 30–41].

The 19 included articles were published between 
2015 and 2022 with a total of 2318 participants. Among 
included studies, 6 explored the COL method, 5 explored 
the TP method, and 12 explored the spinous process 
method. Out of 19 included studies, intra-rater reliabil-
ity was reported in 15, while inter-rater reliability was 
reported in 11 studies for USG measurement of fron-
tal cobb angle. MAD between USG and radiography 

Fig. 3 Transverse processes angle (TPA) measurement on coronal 
ultrasound image
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measured frontal cobb angle was reported in 13, while 
Pearson correlation coefficient was reported in 16 stud-
ies. The data extraction table is presented as Table 1.

Quality assessment
Twelve out of 19 studies showed low levels of concern 
across all domains regarding applicability, indicating that 
the study designs match with the review question. How-
ever, only 1 out of 19 studies demonstrated a low risk of 
bias, with the remaining 18 studies showing an unknown 
or high risk in at least one domain in the QUADAS-2 
assessment tool. Details of quality assessment are dis-
played in Tables 2 and 3.

Data extraction and meta‑analysis
Intra-rater reliability of ultrasound measurement 
ranged from 0.57 to 0.99 (mean 0.96 ± 0.06); whereas 
the inter-rater reliability ranged from 0.75 to 0.96 (mean 
0.93 ± 0.04).

Meta-analysis showed the pooled MAD in frontal Cobb 
angle measurements when comparing radiographs versus 
ultrasound was 4.02 degrees (95% CI:3.28–4.76,  I2 = 94%) 

(Fig. 5). Pooled Pearson correlation coefficient for frontal 
Cobb angle measurements when comparing radiographs 
versus ultrasound was 0.91 (95% CI: 0.87–0.93,  I2 = 90%).

Subgroup analyses on the various ultrasound measure-
ment protocols showed that the pooled correlations were 
0.87 (95% CI: 0.72–0.93,  I2 = 92%) for the center of lamina 
(COL); 0.90 (95% CI: 0.85–0.93,  I2 = 90%) for the spinous 
process (SP) method; and 0.94 (95% CI: 0.88–0.97, 
 I2 = 90%) for the transverse process (TP) method.

Discussion
Results from this study showed good intra- and inter-
rater reliability of ultrasound measurement of frontal 
cobb angle in AIS patients. It also showed good validity 
in terms of correlation and MAD when compared with 
the gold standard of radiological frontal cobb angle in 
AIS patients. However, the included studies demon-
strated unclear to high risk of bias. The strengths and 
limitations of the included studies and the current 
methods of ultrasound measurement of frontal cobb 
angles in AIS patients will be discussed in the following 
section.

Fig. 4 The PRISMA selection flow diagram
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Table 2 Risk of bias (RoB) of each included study [5, 6, 8, 11–14, 30–41]
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Table 3 Applicability concerns of each included study [5, 6, 8, 11–14, 30–41]
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Strengths and limitations of different methods 
of ultrasound
The spinous process (SP) method was the most fre-
quently adopted protocol overall (12 out of 19 studies). 
However, previous studies have reported limitations of 
the spinous process method. Significant deviation of 
spinous processes due to significant axial vertebral rota-
tion would also cause inaccurate interpretation of the 
vertebral body alignment and hence influence the angle 
measurement on ultrasound imaging [6, 11, 12, 22, 42]. 
Various conversion formulae have been proposed for sys-
tematic correction of the spinous process method values 
for prediction of Cobb angles based on relatively small 
cohorts of subjects [5, 6, 43]. In future studies, establish-
ment of conversion formulae from large-scale studies 
with adjustment according to various curve levels and 
curve severity would be warranted.

The center of lamina (COL) method was another com-
monly used approach (6 out of 19 studies). However, 
the pooled correlation with this approach against radio-
graphic measurements was the weakest among the three 
methods compared (r = 0.86). Theoretically, the close 
relationship between the laminae assessed in the COL 
method and the vertebral bodies used in calculating the 
Cobb angle on radiography would allow more accurate 
estimation [26]. However, in practice, the laminae are 
also located deeper than the spinous processes along 
the posterior-anterior direction and are therefore more 

difficult to detect, even more so in the lumbar region and 
in obese subjects [26, 31].

The strongest level of correlation (r = 0.94) was demon-
strated by the transverse processes (TP) method, possibly 
because the vertebral bodies used in radiographic Cobb 
measurement were along the same direction of the lines 
connecting the pairs of transverse processes [13]. How-
ever, widespread application of this method is limited 
by the difficulty in visualizing the transverse processes 
on ultrasound images [13]. As transverse processes are 
located beneath the thick and unevenly distributed par-
aspinal muscles at various depths, it is technically difficult 
to capture high quality ultrasound images even with the 
currently optimized default ultrasound setting of depth, 
focus, and frequency [13]. To add to the challenges of the 
TP method, an ultrasound probe with adequate width is 
required to cover all transverse processes from the spine 
in a single motion, and the view could also be obstructed 
by the winged scapula of scoliosis patients [6, 12, 13].

Given that various vertebral landmarks can be identi-
fied on ultrasound images, the use of combined land-
marks to provide more anatomical information for 
ultrasound measurement has been explored [12, 37]. In 
particular, superior articular processes (SAP) have been 
used along with transverse processes to achieve better 
validity and reliability of coronal ultrasound measure-
ment [12], but further clinical studies are warranted to 
explore the combination of various bony landmarks for 

Fig. 5 Forest plot of the Mean Absolute Difference between ultrasound and radiographic measurement with corresponding 95% CIs for studies 
on the coronal plane. If two correlation analyses were drawn from the same method and plane in the same study, the difference is denoted 
within the bracket. E.g., Lee (2021) [40] has separate correlation analyses for thoracic and lumbar curves, although both evaluated the coronal plane 
with the spinous process method
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better visualization of the spine to improve the accuracy 
of ultrasound angle measurement [6, 44].

Sources of bias of included studies
Only 1 out of 19 studies demonstrated a low risk of bias, 
with the remaining 18 studies showing an unknown 
or high risk in at least one domain in the QUADAS-2 
assessment tool.

Potential sources of bias include: (1) Unclear descrip-
tion of the recruitment process, whether a consecutive or 
random sampling was performed for patient recruitment. 
(2) the inclusion of subjects without scoliosis (Cobb 
angles < 10°) [5, 6, 11–13]; (3) exclusion of patients owing 
to missing data of radiographic assessment [5, 11, 13]; 
and (4) exclusion of patients with poor ultrasound image 
quality or unclear anatomical landmarks [5, 6, 12, 31], 
high BMI [6, 11], winged scapula [5, 6, 11], severe spinal 
curvatures [6, 14, 30, 31], or pre-selected patients with 
specific curve types [22, 27]. Exclusion of these “difficult 
to diagnose” subjects may lead to overestimation of the 
diagnostic accuracy of ultrasound imaging.

In addition, studies utilizing the aid of previous radio-
graphs by overlaying them onto new ultrasound images 
significantly improved the accuracy and reliability of 
ultrasound measurement, owing to better guidance on 
identification of anatomical landmarks and reduction of 
variation in end-vertebra selection [31]. For valid com-
parison across various included articles, ultrasound 
imaging results should have been interpreted without 
being guided by past radiographic measurements. In 
addition, a delay of a week to even 3  months between 
ultrasound imaging and radiographic examinations were 
present in some of the included studies, which may have 
contributed to bias due to progression of scoliosis, pos-
tural change of the patients, or the corrective effect of 
brace treatment.

Inconsistencies in radiographic Cobb angle measurements
Despite being the current “gold standard” of quantifying 
the frontal cobb angle in AIS patients, previous studies 
have made an argument that intrinsic errors exist in radi-
ographic measurement.

Various factors have been suggested to contribute to 
the variability of such measurements, including but not 
limited to radiographic markers of wide diameter, selec-
tion of end vertebrate, observer bias, protractor accuracy, 
image acquisition techniques and time, image size, and 
positioning [45]. It is generally agreed that 5° is accepted 
as measurement variation between assessments [46]. 
Intra-observer variation 3–5° and inter-observer varia-
tion 6–9° have also been reported in the measurement of 
the Cobb angle [47–50]. Therefore, it may be important 
to acknowledge that inconsistencies observed between 

the use of ultrasonography versus traditional radiography 
for the quantification spinal deformities could be arising 
from an inconsistent “gold standard”.

Limitations and future studies
Nineteen included studies were mostly preliminary stud-
ies confined to relatively small sample sizes, from only a 
few research groups. Included studies are also often from 
a small number of research groups, and there is also high 
heterogeneity among included studies.

Most included studies were published in Hong Kong 
and Canada, by the same groups of researchers. There 
is a possibility that included studies shared parts of the 
same cohorts as subjects.

In terms of heterogeneity, the  I2 value was greater than 
90% in the meta-analyses performed in this study. Keep-
ing in mind the high heterogeneity in the results with 
unknown bias for the majority of the studies, the results 
from meta-analysis should be interpreted with caution. 
Potential sources of heterogeneity may be attributed to: 
(1) different curve severity; (2) different curve types and 
locations; (3) different scanning postures; (4) patient 
demographics; (5) different quality of equipment; and 
(6) experience of the operators. Given that further sub-
group analyses on these parameters were limited owing 
to insufficient sample sizes available in the current lit-
erature, future studies that investigate the accuracy of 
ultrasound measurement in relation to these different 
parameters are warranted.

Conclusion
The current systematic review indicated that there is evi-
dence in favor of using USG for quantitative evaluation 
of frontal cobb angle in AIS. However, the quality of evi-
dence is low due to high risk of bias and heterogeneity 
between existing studies. Current literature is insufficient 
to support the use of USG as a screening and/or follow-
up method for AIS. Further investigation addressing the 
limitations identified in this review is required before 
USG could be adapted for further clinical use.
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