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Abstract 

Background  The aim of this study was to screen three major substance metabolism-related genes and establish 
a prognostic model for osteosarcoma.

Methods  RNA-seq expression data for osteosarcoma were downloaded from The Cancer Genome Atlas (TCGA) 
and GEO databases. Differentially expressed (DE) RNAs were selected, followed by the selection of metabolic-related 
DE mRNAs. Using Cox regression analysis, prognostic DE RNAs were identified to construct a prognostic model. 
Subsequently, independent prognostic clinical factors were screened, and the functions of the long non-coding RNAs 
(lncRNAs) were analyzed. Finally, the expression of signature genes was further tested in osteosarcoma cells using 
quantitative reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting.

Results  A total of 432 DE RNAs, comprising 79 DE lncRNAs and 353 DE mRNAs were obtained, and then 107 met-
abolic-related DE mRNAs. Afterwards signature genes (LINC00545, LINC01537, FOXC2-AS1, CYP27B1, PFKFB4, PHKG1, 
PHYKPL, PXMP2, and XYLB) served as optimal combinations, and a prognostic score model was successfully proposed. 
Three verification datasets (GSE16091, GSE21257, and GSE39055) showed that the model had high specificity and sen-
sitivity. In addition, two independent prognostic clinical factors (age and tumor metastasis) were identified. Finally, 
the concordance rate between the in silico analysis, qRT-PCR, and western blotting analysis was 88.89% (8/9), suggest-
ing the robustness of our analysis.

Conclusions  The prognostic model based on the nine signature genes accurately predicted the prognosis 
of patients with osteosarcoma; CYP27B1, PFKFB4, PHKG1, PHYKPL, PXMP2, and XYLB may serve as metabolism-related 
biomarkers in osteosarcoma.
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Background
Osteosarcoma is the most common cancer of bones and 
joints, accounting for approximately 20% of all benign 
and malignant bone neoplasia [1]. Approximately 800 
new cases of osteosarcoma are diagnosed each year, 
half of which involve adolescents and young adults [2]. 
The 10-year overall survival rates are 60%–70% for all 
patients with osteosarcoma and only 20% for patients 
with metastatic disease. In particular, the survival of 
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metastatic patients has not improved significantly in 
recent years, mainly because of limited therapeutic 
options for metastatic disease [3]. Therefore, there is an 
urgent need to develop predictive methods to improve 
the survival of patients [4]. Prognostic biomarkers can 
predict the possible outcomes of cancers associated 
with disease progression [5], which could provide con-
siderable assistance in clinical practice for patient strat-
ification, treatment management, and disease status 
monitoring.

Many factors, such as miRNA-191 [6], long non-cod-
ing RNA (lncRNA) HOTTIP [7], and survival [8], have 
demonstrated prognostic significance in osteosarcoma; 
however, their detection is inconvenient and costly. 
Therefore, identification of easily assessed prognostic 
factors is required. Metabolites are an objective meas-
urement of the phenotype of a cell, as well as of the inter-
action between the genotype and environment of a cell 
[9]. Metabolomic signatures have been reported in the 
liver, colon, breast, lung, ovarian, and pancreatic cancers 
[9, 10]. Importantly, metabolic alterations have been used 
to classify osteosarcoma [11, 12]. Amino acids, deriva-
tives, carbohydrates, and lipids are the three metabolites 
and their metabolism is associated with osteosarcoma 
progression. Dysregulation of serine and glycine metab-
olism has been identified as a metabolic regulator that 
supports tumor cell growth. A previous study showed 
the anticancer effects of high concentrations of glycine 
and D-serine in osteosarcoma cells; however, when used 
at low physiological concentrations, amino acids can 
induce the proliferation and migration of osteosarcoma 
cells [13]. Cancer cells can undergo glycolysis, metabo-
lizing glucose into lactic acid, rather than oxidative 
phosphorylation. The metabolic transition from oxida-
tive phosphorylation to glycolysis is usually considered a 
hallmark of osteosarcoma [14]. Huang et  al. [15] built a 
risk model based on seven glycolytic genes to effectively 
evaluate the prognosis of osteosarcoma. Reprogramming 
of lipid metabolism has been viewed as a new hallmark 
of tumor malignancy, and disorders of lipid metabolism 
play key roles in tumorigenesis, tumor progression, and 
treatment [16]. A recent study showed that the expres-
sion of lipid metabolism-related genes is closely related 
to the immune microenvironment of patients with oste-
osarcoma and can be used to accurately predict their 
prognosis [17]. In addition, amino acids and their deriva-
tives, lipids, and carbohydrates regulate gene expression 
through molecules that sense these macronutrients and 
act as transcription factors [18]. Alterations in metab-
olism-related genes offer not only new biomarkers for 
diagnosis and prognosis but also potential new targets for 
cancer therapy [19]. However, the expression patterns of 

the metabolism-related genes in osteosarcoma, and their 
prognostic features remain unclear.

In this study, we downloaded the RNA-seq expres-
sion data of osteosarcoma from The Cancer Genome 
Atlas (TCGA) database, which served as the training 
set. Additionally, GSE21257, GSE39055, and GSE16091 
were used as validation datasets. Based on these datasets, 
we selected three major metabolism-related genes and 
established a prognostic model for osteosarcoma.

Methods
Data sources and preprocessing
RNA-seq expression data of osteosarcoma were down-
loaded from the TCGA database, and RNA sequence 
testing was done using the Illumina HiSeq 2000 platform. 
This dataset contained 265 samples that corresponded 
to the clinical information of the osteosarcoma samples, 
and 176 samples with metastasis, clinical survival, and 
prognosis information were included in this analysis. 
These samples and their corresponding RNA-Seq expres-
sion data were used as training datasets.

Additionally, with “Osteosarcoma and Homo sapiens” 
as keywords, all public profiles in the NCBI GEO data-
base were searched. Datasets that met the following cri-
teria were included in our study: 1) datasets that were 
gene expression profile data; 2) datasets that were about 
the expression profile of solid osteosarcoma tissues; 3) 
the samples in the dataset had survival and prognosis 
information; 4) the total sample size was no less than 30; 
and 5) the samples contained clear classification informa-
tion for osteosarcoma with and without metastasis. Each 
dataset was required to at least meet requirements 1 to 4. 
Finally, three datasets were analyzed as follows.

A.	GSE21257 [20]: contained 53 osteosarcoma sam-
ples, including 34 metastatic and 19 non-metastatic 
osteosarcoma samples, and all samples had clinical 
prognostic information. The detection platform was 
an Illumina human-6 v2.0 expression beadchip. This 
dataset simultaneously met requirements 1 to 5.

B.	 GSE39055 [21]: contained 37 osteosarcoma samples 
with clinical survival and prognosis information and 
was detected on the Illumina HumanhT-12 WG-
DASL V4.0 R2 expression beadchip. This dataset 
simultaneously met requirements 1 to 4.

C.	GSE16091 [22]: a total of 34 osteosarcoma samples 
with clinical survival and prognostic information 
were included. The detection platform used was the 
Affymetrix Human Genome U133A Array. This data-
set simultaneously met criteria 1 to 4.

Three datasets were used as validation datasets for the 
analysis.
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Expression profile reannotation and differentially 
expressed RNAs screening
According to the RefSeq ID information, the lncRNAs and 
mRNA in the downloaded datasets were annotated based 
on 4641 lncRNAs and 19,198 protein-coding genes in the 
HUGO Gene Nomenclature Committee database [23].

Osteosarcoma samples in the TCGA dataset were 
divided into metastatic and non-metastatic groups. The 
limma package (version 3.34.7) [24] in R3.6.1 was used 
to screen for significantly differentially expressed (DE) 
RNAs (mRNAs and lncRNAs) between metastatic and 
non-metastatic groups with thresholds of false discov-
ery rate (FDR) < 0.05, and |log2 fold change (FC)|> 0.5. 
According to the expression values of DE RNAs in the 
training dataset samples, bidirectional hierarchical clus-
tering based on the centered Pearson correlation algo-
rithm [25] was performed using pheatmap (version 1.0.8) 
[26] in R3.6.1.

Screening of DE mRNAs associated with metabolism 
of three substances
From the Gene Set Enrichment Analysis (GSEA) data-
base [27], the genes associated with metabolism of 
amino acids and derivatives, carbohydrates, and lipids, 
were downloaded. These genes were compared with DE 
mRNAs, and the intersections served as metabolism-
related DE mRNAs.

Construction of a prognostic model
Screening for differentially expressed prognostic RNAs
In osteosarcoma samples from the TCGA training set, 
the DE mRNAs and lncRNAs associated with survival 
prognosis were selected based on their relationship to 
metabolic processes, using univariate Cox regression 
analysis in R3.6.1 survival pack version 2.41–1 [28]. Fur-
ther multivariate Cox regression analysis was performed 
on these DE RNAs to screen for those associated with 
overall survival prognosis and independent prognosis. 
The log-rank test (p < 0.05) was used as the threshold.

Screening for optimal combinations of DE RNAs
Based on the identified DE RNAs associated with overall 
survival prognosis and independent prognosis, the opti-
mal combination of DE RNAs was screened using the 
least absolute shrinkage and selection operator (LASSO) 
Cox regression model [29] in the R3.6.1 penalized pack-
age version 0.9.50 [30]. According to the prognostic 
factors of each element in the optimized DE RNAs com-
bination and the expression levels of DE RNAs in the 
training samples, the prognostic score (PS) model was 
constructed as follows:

Where βDERNAs represents the prognostic factor of sig-
nature DE RNAs, and Exp DERNAs represents the expres-
sion level of target DE RNAs in the training data set.

Efficacy evaluation and comparison of prognostic risk 
prediction models
The PS values of each sample in the TCGA dataset were 
calculated. Then, according to the PS median value, 
the samples in the training set were divided into high- 
(PS ≥ PS median) and low- (PS < PS median) risk groups, 
and the correlation between the high- and low- groups 
and actual survival prognosis information was evalu-
ated using the Kaplan–Meier (KM) curve method using 
the survival pack version 2.41–1 [28]. Meanwhile, in the 
validation set, the expression values of the target DE 
mRNAs were extracted, and the PS value of each sample 
was calculated. The validation samples were also divided 
into high- and low-risk groups to evaluate the correlation 
between high- and low-risk groups and actual survival 
prognosis information.

Independent prognostic clinical factors screening 
and stratification analysis
In the osteosarcoma samples from the TCGA training 
set, univariate and multivariate Cox regression analyses 
in the R3.6.1 survival package (version 2.41–1) [28] were 
used to screen the independent prognostic factors, and 
the log-rank p value < 0.05 was selected as the threshold 
value of significant correlation.

To further study the relationship between independent 
prognostic clinical factors and risk groups, we performed 
a stratification analysis for these independent prognostic 
clinical factors. Briefly, the samples were divided into dif-
ferent groups according to clinical factors, and a correla-
tion analysis of the risk prognosis model was performed 
in these groups.

Nomogram of the 3‑ and 5‑year survival models
To further investigate the correlation between inde-
pendent prognostic clinical factors, the PS model, and 
survival prognosis, we constructed a nomogram of the 3- 
and 5-year survival rate prediction models based on the 
obtained independent prognostic factors combined with 
the risk information identified by the prognostic predic-
tion model using the RMS package version 5.1–2 [31, 32] 
of R3.6.1.

Comparative analysis of multiple models
Based on the independent prognostic clinical factors 
obtained above, a prognostic model of clinical factors 
was constructed and compared with the PS model using 

Prognostic score (PS) = βDE RNAs′ × ExpDE RNAs′
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the following two parameters: the area under the receiver 
operating characteristic (ROC) curve and the C-index. 
The ROC curve is a classification model and the area 
under the ROC curve is a quantitative index of the ROC 
curve. The value distribution of the area under the ROC 
curve is between 0.5 and 1, such that the closer to 1, the 
better is the performance of the classifier. This evaluation 
index was approved by R3.6.1 pROC version 1.14.0 [33]. 
The C-index is used to evaluate the predictive power of 
the model and estimate the probability that the predicted 
results are consistent with the actual observed results 
[34]. A C-index above 0.70 indicates a good model, where 
as a score of approximately 0.50 indicates a random back-
ground. The evaluation index was calculated using R3.6.1 
survcomp version 1.34.0 [35].

Functional analysis of signature lncRNAs
With respect to the lncRNAs used for model construc-
tion, combined with the metabolism-related DE mRNAs, 
the Pearson correlation coefficients between the expres-
sion (based on the expression level in the TCGA training 
set) of signature lncRNAs and target DE mRNAs were 
calculated using the cor function in R3.6.1. A co-expres-
sion network between significant DE signature lncRNAs 
and metabolism-related genes was constructed based on 
expression correlation and visualized using Cytoscape 
3.6.1 [36]. The gene nodes in the network were subjected 
to biological process of gene ontology (GO) terms and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses using DAVID version 6.8 
[37, 38], and a p value < 0.05 was selected as the threshold 
of enrichment significance.

Cell culture
Human osteosarcoma cells (U2OS and Saos2) and osteo-
blasts hFOB1.19 were purchased from iCell Bioscience 
Inc. (Shanghai, China), and cultured in McCoy’s 5A 
medium containing 10% fetal bovine serum and 1% peni-
cillin/streptomycin. Cells were cultured and passaged at 
37 °C in a 5% CO2 humidified atmosphere.

Reverse transcription quantitative real‑time PCR (qRT‑PCR)
Total RNA was extracted from the cells using RNAiso 
Plus (Takara, Tokyo, Japan) and reverse transcribed into 
cDNA using PrimeScript RT Master Mix (Takara) fol-
lowing the manufacturer’s instructions. Power SYBR 
Green PCR Master Mix (Thermo Fisher, Waltham, USA) 
was added for gene amplification using a fluorescence 
ratio PCR instrument (LongGene, Hangzhou, China), 
with GAPDH as an internal reference. The qRT-PCR 
reaction was initiated at 50  °C for 3  min, followed by 

95  °C for 30  s, 40 cycles at 95  °C for 5  s, and 60  °C for 
30  s. The sequences of all primers are listed in Table  1. 
The relative expression levels of lncRNAs FOXC2-AS1, 
LINC00545, and LINC01537, and mRNAs CYP27B1, 
PFKFB4, PHKG1, PHYKPL, PXMP2, and XYLB were cal-
culated using the 2–△△Ct method.

Western blotting
Total protein was isolated from the cells using RIPA lysis 
buffer and quantified using a BCA protein assay kit (Bey-
otime, Shanghai, China) according to the manufacturer’s 
protocols. Protein samples (20  μg) were then separated 
by SDS-PAGE and transferred onto polyvinylidene fluo-
ride membranes. After blocked with 5% skim milk at 37 
℃ for 2  h, the membranes were respectively incubated 
with the anti-PFKFB4 antibody (1:1000, Proteintech, 
Wuhan, China), anti-PHYKPL antibody (1:1000, Protein-
tech), anti-PXMP2 antibody (1:1000, Abcam, Cambridge, 
UK), anti-XYLB antibody (1: 1000, Thermo Fisher Scien-
tific), and anti-GAPDH antibody (1:1000, Proteintech) 
at 4 ℃ overnight. Thereafter, the membranes were incu-
bated with the HRP-conjugated secondary antibodies 
(1:5000; Jackson ImmunoResearch, Lancaster, PA, USA) 
at 37 ℃ for 1 h. After washing, protein bands were visu-
alized using an enhanced chemiluminescence assay kit 
(Thermo Fisher Scientific).

Table 1  The sequences of all primers used in this study

Primers Primer sequence (5’ to 3’)

FOXC2-AS1 F: ACC​TTG​ACG​AAG​CAC​TCG​TT

R: GTG​GGT​TGT​CTC​AAC​ATC​CTTT​

LINC00545 F: GCT​GCA​GAT​ATG​TGT​CCT​GAAC​

R: TGT​ACA​ACT​CCT​CTG​CCA​CAAC​

LINC01537 F: CAG​CCT​TCC​TCT​CAG​AAC​ATCT​

R: CTG​TCC​TGA​AAC​ACA​AAG​CAAG​

CYP27B1 F: GGA​ACC​CTG​AAC​AAC​GTA​GTC​

R: AGT​CCG​AAC​TTG​TAA​AAT​TCCCC​

PFKFB4 F: TCC​CCA​CGG​GAA​TTG​ACA​C

R: GGG​CAC​ACC​AAT​CCA​GTT​CA

PHKG1 F: TGG​GAT​GAT​TAC​TCG​GAC​ACC​

R: CTG​GTA​GTA​GAT​CCG​CAC​TGA​

PHYKPL F: AGC​TCT​GTG​TGT​TCT​ATT​TCCTG​

R: GCA​TGA​TCT​AAT​ACC​ACC​ACGTC​

PXMP2 F: AGA​AGT​CTG​GAT​GTC​GGT​GG

R: GAA​GGC​TGA​GGC​GTC​TTT​C

XYLB F: TGT​TGA​TGC​AGA​GTT​GAA​TGTCT​

R: ACA​AGG​CTA​GGA​CTT​GAG​AGAA​

GAPDH F: TGA​CAA​CTT​TGG​TAT​CGT​GGA​AGG​

R: AGG​CAG​GGA​TGA​TGT​TCT​GGA​GAG​
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Statistical analysis
Each experiment was repeated three times, and data were 
expressed as the mean ± standard deviation (SD). Statis-
tical analysis was performed using GraphPad Prism 5 
(San Diego, CA, USA), and Student’s t-test was used to 
compare the differences between normal osteoblasts 
and osteosarcoma cells. Statistical significance was set at 
p < 0.05. level.

Results
Identification of DE RNAs between the metastatic 
and non‑metastatic samples
A total of 18,497 mRNAs, and 2528 lncRNAs were 
identified based on the RefSeq ID information pro-
vided by the downloaded data. The 176 osteosarcoma 
samples in the TCGA training set were divided into 
metastatic (56 samples) and non-metastatic (120 sam-
ples) groups. Based on the thresholds of FDR < 0.05 and 

Fig. 1  Identification of differentially expressed (DE) RNAs and metabolic-related DE mRNAs. A. Effect size (log2FC)–log10 (false discovery rate) 
volcano plots. Red and blue dots represent DE RNAs, horizontal dashed lines represent false discovery rates < 0.05, two vertical dashed lines 
represent |log2 fold change (FC)|> 0.5, and the size of each point represents the absolute value of logFC. B. Bidirectional hierarchical clustering 
heatmap based on upregulated and downregulated DE-RNAs (top50). C. Venn diagram of the DE mRNAs and metabolic genes
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|log2 FC|> 0.5, 432 DE RNAs, including 79 DE lncRNAs 
and 353 DE mRNAs were obtained (Fig. 1A). The bidi-
rectional hierarchical clustering of the identified DE 
RNAs showed that these DE RNAs could significantly 
differentiate metastatic from non-metastatic samples 
(Fig. 1B).

Screening of metabolic‑related DE mRNAs
Genes related to the metabolism of the amino acids, car-
bohydrates, and lipids were downloaded from the GSEA 
database, and 372 genes associated with the metabolism 
of amino acids and derivatives, 293 associated with the 
metabolism of carbohydrates, and 738 related to the 
metabolism of lipids were identified. After comparison 
with the DE RNAs, 107 overlapping genes were selected 
as metabolism-related DE mRNAs (Fig. 1C).

Construction and assessment of the proposed prognostic 
model
Based on univariate Cox regression analysis, 44 DE RNAs 
significantly correlated with disease prognosis were 
screened, including 20 DE lncRNAs and 24 DE mRNAs. 
Further, multivariate Cox regression analysis identified 
13 independent prognostic DE RNAs (six lncRNAs and 

seven mRNAs). The Cox proportional hazards model 
based on the L1-penalized regularized regression algo-
rithm in the penalized package was used to screen the 
optimized DE RNAs combinations, and nine DE RNAs 
(LINC00545, LINC01537, FOXC2-AS1, CYP27B1, 
PFKFB4, PHKG1, PHYKPL, PXMP2, and XYLB) were the 
optimal combinations (Table 2).

Table 2  The optimized signature differentially expressed RNAs 
combination

Symbol Type Multi-variate Cox regression 
analysis

LASSO coef

HR 95%CI P value

LINC00545 lncRNA 0.467 0.237–0.914 2.63E-02 -0.48189728

LINC01537 lncRNA 0.624 0.226–0.721 3.62E-02 -0.01215663

FOXC2-AS1 lncRNA 1.271 1.089–1.702 1.08E-02 0.2173399

CYP27B1 mRNA 1.666 1.258–2.206 3.68E-04 0.41012859

PFKFB4 mRNA 1.449 1.068–2.171 4.72E-02 0.3083252

PHKG1 mRNA 0.774 0.584–0.826 4.75E-02 -0.21753316

PHYKPL mRNA 0.907 0.581–0.916 4.67E-02 -0.03056162

PXMP2 mRNA 1.771 1.301–2.411 2.84E-04 0.52020516

XYLB mRNA 2.386 1.130–5.038 2.25E-02 0.58790181

Fig. 2  Construction and assessment of the prognostic model. Kaplan–Meier (KM) curves and receiver operating characteristic (ROC) curves 
for A TCGA, B GSE16091, C GSE21257, and D GSE39055. Left: KM curves based on the prognosis score prediction model. Green and red curves 
represent low- and high-risk samples, respectively. Right panel: ROC curves based on the prognostic model. The figures in parentheses indicate 
the specificity and sensitivity of the ROC curve
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Based on the LASSO prognostic coefficients of the nine 
optimized DE RNAs combinations and the expression 
levels of DE RNAs in the TCGA training set, a PS model 
was constructed. The PSs of the samples in the training 
dataset were calculated. All samples in the TCGA train-
ing dataset (Fig.  2A) and the three verification datasets 
(GSE16091, GSE21257, and GSE39055) (Fig.  2B–D) 
were divided into high- and low-risk score groups. There 
was a significant correlation between the high and low 
grouping and the actual disease prognosis information 
evaluated using the survival package (version 2.41–1 KM 
curve in R3.6.1), as shown in Fig. 2.

Independent prognostic clinical factors associated 
with survival and prognosis
Age, tumor metastasis, and PS model status were inde-
pendent prognostic factors (Table  3). The prognosis-
related KM curves for age and tumor metastasis are 
shown in Fig. 4A and B. The prognosis of young patients 
and those without metastatic osteosarcoma was better, 
which is consistent with the actual situation.

Then according to the age information, the sample was 
divided into ≤ 65 years old and > 65 years old groups for 
correlation analysis of risk prognosis model. The results 
showed that in the two age groups, there was a signifi-
cant correlation between the different risk groups based 
on the PS model prediction and the actual prognosis. 
Besides, the correlation was more pronounced in the age 
group ≤ 65  years old, which indicated, to some extent, 
that the PS model was more beneficial to the accuracy 
of prediction of survival and prognosis of young patients 
(Fig. 3A).

Based on tumor metastasis information, the sam-
ples were divided into metastatic and non-metastatic 

osteosarcoma groups. Correlation analysis of the risk 
prognosis model in the two sample groups showed a 
significant correlation between the different risk groups 
based on the PS model prediction and actual prognosis 
(Fig. 3B).

Establishment and assessment of the nomogram survival 
models
To further analyze the correlation between age, tumor 
metastasis, PS model status factors, and survival prog-
nosis, a nomogram survival rate model of the TCGA 
samples was constructed and analyzed (Fig.  4A). The 
“total points” axis of the nomogram combined various 
clinical indicators to predict the survival of the samples. 
The consistency between the 3- and 5-year survival rates 
predicted by the nomogram survival rate model and the 
actual 3- and 5-year survival rates was analyzed and veri-
fied, as shown in Fig. 4B. The 3- and 5-year C-index indi-
ces were 0.772 and 0.823, respectively.

Moreover, based on the two independent prognostic 
factors obtained, a prognostic model of clinical factors 
was constructed separately, which was then compared 
with the previously constructed PS prognostic model 
based on the TCGA training set and GSE21257 data-
set (there were two factors of age and tumor metastatic 
in this dataset, which could be used to verify multiple 
model results). The ROC curves for each type of model 
are shown in Fig. 4C. The parameters of the ROC curve 
are listed in Table 4.

Co‑expression of lncRNAs‑mRNAs, and functional analysis
For the three DE lncRNAs used for model construc-
tion, combined with the 107 DE mRNAs related to the 
metabolism of the three types of substrates, the Pearson 

Table 3  Independent prognostic clinical factors screening

Clinical characteristics TCGA(N = 176) Uni-variables cox Multi-variables cox

HR 95%CI P HR 95%CI P

Age(years,mean ± sd) 61.10 ± 15.21 1.018 1.001–1.036 3.99E-02 1.029 1.006–1.053 1.28E-02

Gender(Male/Female) 72/104 1.061 0.642–1.750 8.20E-01 - - -

Pathologic tumor depth(mean ± sd) 6.35 ± 3.68 1.135 1.051–1.225 9.96E-04 1.104 0.934–1.305 2.45E-01

Pathologic tumor length(mean ± sd) 11.89 ± 7.25 1.062 1.031–1.093 3.91E-05 1.089 0.967–1.225 1.60E-01

Pathologic tumor width(mean ± sd) 8.85 ± 5.51 1.092 1.043–1.144 1.37E-04 0.947 0.805–1.113 5.07E-01

Tumor recurrence(Yes/No/-) 28/141/7 2.603 1.533–4.422 2.38E-04 0.905 0.402–2.040 8.10E-01

Tumor metastatic(Yes/No) 56/120 3.014 1.834–4.954 4.80E-06 3.869 1.901–7.874 1.91E-04

Radiotherapy(Yes/No/-) 64/110/2 0.865 0.517–1.447 5.80E-01 - - -

Tumor necrosis(No/Slight/Moderate/Severe/-) 61/35/59/11/10 1.182 0.923–1.513 1.83E-01 - - -

PS model status(High/ Low) 88/88 5.126 2.890- 9.090 8.74E-10 5.579 2.618–11.889 8.49E-06

Dead(Death/Alive/-) 64/112 - - - - - -

Overall survival time(months,mean ± sd) 39.45 ± 31.92 - - - - - -
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correlation coefficients between the three signature lncR-
NAs and the 107 DE mRNAs were calculated based on 
their expression levels in the TCGA training set. Con-
nection pairs with significantly positive correlation coef-
ficients were retained and 169 connection pairs were 
obtained. A co-expression network of the significant DE 
signature lncRNAs and metabolic genes was constructed 
by expressing this correlation, as shown in Fig.  5A. The 
network contained 91 nodes, including 3 lncRNAs and 
88 metabolism-related DE mRNAs. Functional and path-
way enrichment analyses were performed for DE mRNAs 
with a positive correlation with the signature lncRNAs 
contained in the co-expression network. Nineteen bio-
logical processes (leukotriene biosynthetic process, 
cyclooxygenase pathway, oxidation–reduction process, 

etc.) and seven KEGG signaling pathways (metabolic 
pathways, arachidonic acid metabolism, and glycer-
ophospholipid metabolism) were screened (Fig. 5B).

Validation of the signature genes
The expression levels of the nine signatures, includ-
ing three lncRNAs (LINC00545, FOXC2-AS1, and 
LINC01537) and six mRNAs (CYP27B1, PFKFB4, 
PHKG1, PHYKPL, PXMP2, and XYLB) in osteosarcoma 
cells were determined by qRT-PCR and western blotting. 
We found that the levels of LINC00545 and LINC01537 
were significantly decreased, while the FOXC2-AS1 level 
was evidently increased in the osteosarcoma cells (U2OS 
and Saos2) compared with the osteoblasts hFOB1.19 
(p < 0.05, Fig.  6A), which was consistent with the 

Fig. 3  Screening of independent prognostic clinical factors. A. The KM curves of age. Left: age in the TCGA prognostic KM curve. Green and red 
represent the KM curves of the sample group below or above 65 years of age, respectively. Middle and right: KM curves related to prognosis 
based on the prognosis score prediction model for the sample groups aged under and over 65 years old. Green and red curves represent 
low- and high-risk samples, respectively. B. The KM curves of metastasis. Left: tumor metastatic factors in TCGA sample prognostic KM curves. Green 
and red represent the KM curves of the sample group below or above 65 years of age, respectively. Middle and right: KM curves related to prognosis 
based on the prognosis score prediction model for the sample groups with and without tumor metastasis. Green and red curves represent 
low- and high-risk samples, respectively
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Fig. 4  Establishment and evaluation of nomogram models. A Nomogram of the survival prediction model based on the nomogram 
of independent prognostic factors. B Consistent plot of 3- and 5-year survival rates predicted using actual survival rates. The horizontal axis 
represents the predicted osteosarcoma rate, the vertical axis represents the actual osteosarcoma rate, and black and red represent the 3- and 5-year 
predicted line charts, respectively. C ROC curve of the prognostic model based on various factors in the TCGA training set (left) and validation set 
GSE21257 (right)

Table 4  ROC curve parameter of each model

Type AUROC C-index P Value

TCGA​ GSE21257 TCGA​ GSE21257 TCGA​ GSE21257

Age 0.698 0.597 0.588 0.527 3.356E-02 2.958E-01

Tumor metastatic 0.704 0.663 0.620 0.544 4.225E-04 2.466E-02

Clinical model 0.783 0.680 0.674 0.681 1.714E-05 3.593E-04

Prognostic score model 0.871 0.741 0.823 0.705 0 1.52E-02

Combine model 0.934 0.864 0.830 0.737 0 7.41E-13

Fig. 5  Co-expression of lncRNAs and metabolism-related genes and functional analysis. A Co-expression network of signature lncRNAs 
and metabolism-related genes. Squares and rounds represent lncRNA and mRNA, respectively; green to red represent the change in the degree 
of differential expression from negative to positive. Oversized circular nodes are the signature DE genes used to build the model. B Biological 
processes of GO terms and KEGG signaling pathways enriched by genes in the co-expression network. The horizontal axis represents the number 
of genes and the vertical axis represents the item name. The size of the point represents the number of genes and the color represents significance

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Fig. 6  Validation of signature genes in osteosarcoma cells. A The expression levels of three lncRNAs (LINC00545, FOXC2-AS1, and LINC01537) were 
determined by qRT-PCR. B The expression levels of six mRNAs (CYP27B1, PFKFB4, PHKG1, PHYKPL, PXMP2, and XYLB) were measured by qRT-PCR. 
C The protein expression levels of PFKFB4, PHYKPL, PXMP2, and XYLB in osteosarcoma cells were detected by western blotting. * p < 0.05, ** p < 0.01, 
compared with the osteoblasts hFOB1.19
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bioinformatics analysis. In addition, compared to osteo-
blast hFOB1.19, the expression of PFKFB4, PXMP2, and 
XYLB was significantly upregulated, whereas the expres-
sion of CYP27B1 and PHYKPL was downregulated in 
osteosarcoma cells (U2OS and Saos2) (p < 0.05, Fig. 6B). 
However, there was no significant difference in PHKG1 
expression between osteoblasts hFOB1.19 and osteosar-
coma cells (U2OS and Saos2) (p > 0.05, Fig.  6B). Finally, 
the protein expression levels of PFKFB4, PHYKPL, 
PXMP2, and XYLB in osteosarcoma cells were deter-
mined by western blotting. The expression of PFKFB4, 
PHYKPL, PXMP2, and XYLB proteins in hFOB1.19, 
U2OS, and Saos2 cells was in accordance with their 
mRNA expression determined by qRT-PCR (Fig.  6C). 
These results indicate that the concordance rate between 
the in silico analysis and qRT-PCR/western blotting was 
88.89% (8/9), suggesting the robustness of our analysis.

Discussion
A growing body of evidence shows that the occurrence, 
progression, and prognosis of osteosarcoma are corre-
lated with metabolites of amino acids and their deriva-
tives, carbohydrates, and lipids [39, 40]. In this study, 
we first identified 107 metabolism-related DE mRNAs 
and successfully proposed a PS model based on nine 
genes (LINC00545, LINC01537, FOXC2-AS1, CYP27B1, 
PFKFB4, PHKG1, PHYKPL, PXMP2, and XYLB). A per-
formance evaluation of this PS model based on the 
TCGA training dataset and three verification datasets 
(GSE16091, GSE21257, and GSE39055) showed that the 
PS model had high specificity and sensitivity. In addi-
tion, two independent prognostic clinical factors (age 
and tumor metastasis) were identified. Subsequently, a 
co-expression network, including three lncRNAs and 
88 metabolism-related DE mRNAs, was constructed, 
and functional analysis showed that the co-expressed 
genes LINC00545 and LINC01537 were enriched in the 
cyclooxygenase pathway.

lncRNAs, a class of non-coding RNAs longer than 200 
nt, are involved in multiple physiological and patho-
logical processes [41]; they have been reported to play 
critical roles in tumorigenesis, progression, metastasis 
and prognosis [42]. In this study, three signature lncR-
NAs (LINC00545, LINC01537, and FOXC2-AS1) were 
selected to construct a PS model, suggesting that they 
might play critical roles in osteosarcoma prognosis. 
Recent studies have demonstrated that some natural anti-
sense lncRNAs play key roles in regulating cancer biology 
[43, 44]. FOXC2-AS1 is a single antisense oligonucleo-
tide RNA transcribed from the negative strand of FOXC2 
(forkhead box C2), which facilitates the proliferation 
of many human cancers [45, 46]. Zhang et al. [47] dem-
onstrated that the lncRNA FOXC2-AS1 was positively 

upregulated in adriamycin-resistant osteosarcoma cell 
lines and tissues, was associated with poor prognosis 
of osteosarcoma, and promoted adriamycin resistance 
in osteosarcoma cells in vitro and in vivo. Furthermore, 
the co-expression genes of LINC00545 and LINC01537, 
such as PTGIS, PTGES and PTGS1, were associated with 
cyclooxygenase pathway function. Cyclooxygenase, an 
enzyme that catalyzes the conversion of arachidonic acid 
to prostaglandin, is not only a key enzyme in arachidonic 
acid metabolism but is also involved in the regulation 
of cell proliferation, apoptosis, and angiogenesis [48]. 
Importantly, it has been suggested that cyclooxygenase-2 
expression is correlated with the progression of some 
human malignancies, including osteosarcoma [49, 50]. 
Wang et al. [50] recently reported that cyclooxygenase-2 
expression may correlate with metastasis and poor prog-
nosis in osteosarcoma. Taken together, we speculate that 
LINC00545, LINC01537, and FOXC2-AS1 may play 
important roles in osteosarcoma occurrence and devel-
opment, and that LINC00545 and LINC01537 may be 
associated with osteosarcoma prognosis via the cyclooxy-
genase pathway.

Since metabolic differences between tumor cells and 
adjacent normal cells were first reported in 1956, meta-
bolic reprogramming has become a popular topic in 
tumor biology research [51]. The present study focused 
on three major metabolism-related genes and identi-
fied six signature metabolism-related genes (CYP27B1, 
PFKFB4, PHKG1, PHYKPL, PXMP2, and XYLB) as oste-
osarcoma biomarkers. qRT-PCR and western blotting 
showed the downregulation of CYP27B1 and PHYKPL 
and the upregulation of PFKFB4, PXMP2, and XYLB in 
osteosarcoma cells. CYP27B1 (cytochrome P450 fam-
ily 27, subfamily B, polypeptide 1) is a member of the 
cytochrome P450 superfamily that plays critical roles in 
xenobiotic metabolism and calcium homeostasis [52]. 
CYP27B1 level is upregulated in breast tumors compared 
to that in normal tissues [53]. PFKFB4 (6-phosphof-
ructo-2-kinase/fructose-2,6-bisphosphatase-4) encodes 
a bifunctional metabolic enzyme that synthesizes impor-
tant sugar phosphate metabolites stimulating glycolysis 
[54]. PFKFB4 is a molecular fulcrum that activates tran-
scriptional activation coupled with glucose metabolism 
by stimulating steroid receptor coactivator-3, which is 
critical for promoting metastatic tumors [55]. PHKG1, 
(phosphorylase kinase subunit G1) is the catalytic 
gamma subunit of glycogen phosphorylase kinase. As the 
only enzyme known to catalyze glycogen phosphorylase 
activation, glycogen phosphorylase kinase catalyzes the 
rate-limiting step in glycogen breakdown. It can regu-
late glycogenolysis by activating glycogen phosphorylase, 
thus leading to ATP production via glycolysis [56]. This 
extra burst of energy allows the tumor cells to perform 
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high-energy tasks. PHYKPL (5-phosphohydroxy-L-lysine 
phospho-lyase), XYLB (xylulokinase) and CYP27B1 are 
involved in various metabolic pathways. Metabolic repro-
gramming is a hallmark of cancer [57]. Oncogene activa-
tion and loss of tumor suppressors promote the metabolic 
reprogramming of cancer cells, thereby enhancing nutri-
ent uptake to provide energy and to supply biosynthetic 
pathways [58]. PXMP2 (peroxisomal membrane protein 
2) is associated with inflammatory responses and bone 
remodeling [59]. These reports, together with our find-
ings, suggest that CYP27B1, PFKFB4, PHKG1, PHYKPL, 
PXMP2, and XYLB may be biomarkers of osteosarcoma 
progression and prognosis, and that the PS model con-
structed from the nine signatures (three lncRNAs and six 
mRNAs) can be effectively applied for risk classification 
and prognosis prediction of osteosarcoma.

Furthermore, in addition to genetic biomarkers, two 
independent prognostic clinical factors (age and tumor 
metastasis) were identified in our study. In many malig-
nancies, age at diagnosis is a well-known prognostic fac-
tor. A previous study demonstrated that younger patients 
with osteosarcoma have significantly better outcomes 
than older patients [60]. Regarding the other factor 
(tumor metastasis), it has been reported that the prog-
nosis for patients with metastatic osteosarcoma is poor 
compared to that for non-metastatic tumors [61]. There-
fore, we concluded that age and tumor metastasis are 
closely associated with the development and prognosis of 
osteosarcoma.

However, this study has some limitations. First, the 
effects of the identified signature lncRNAs on metabo-
lism require further exploration, and the specific roles 
and mechanisms of the screened signatures in osteosar-
coma should be further investigated using in  vitro and 
in  vivo assays. In addition, the performance of the pro-
posed PS model based on nine signatures should be eval-
uated and validated clinically.

Conclusions
In conclusion, we successfully constructed a PS 
model based on the expression levels of LINC00545, 
LINC01537, FOXC2-AS1, CYP27B1, PFKFB4, PHKG1, 
PHYKPL, PXMP2, and XYLB. This PS model could accu-
rately predict the prognosis of patients with osteosar-
coma. In addition, CYP27B1, PFKFB4, PHKG1, PHYKPL, 
PXMP2, and XYLB may serve as metabolism-related bio-
markers of osteosarcoma. These findings help expand our 
understanding of metabolism-related genes associated 
with osteosarcoma and provide a theoretical basis for the 
proposed PS model based on nine signatures to aid in the 
diagnosis, therapy, and prognostic assessment of osteo-
sarcoma patients.
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