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and accuracy performance: a systematic

review
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Abstract

Background To summarize the statistical performance of machine learning in predicting revision, secondary knee
injury, or reoperations following anterior cruciate ligament reconstruction (ACLR), and to provide a general overview
of the statistical performance of these models.

Methods Three online databases (PubMed, MEDLINE, EMBASE) were searched from database inception to February
6, 2024, to identify literature on the use of machine learning to predict revision, secondary knee injury (e.g. anterior
cruciate ligament (ACL) or meniscus), or reoperation in ACLR. The authors adhered to the PRISMA and R-AMSTAR
guidelines as well as the Cochrane Handbook for Systematic Reviews of Interventions. Demographic data and
machine learning specifics were recorded. Model performance was recorded using discrimination, area under the
curve (AUQ), concordance, calibration, and Brier score. Factors deemed predictive for revision, secondary injury or
reoperation were also extracted. The MINORS criteria were used for methodological quality assessment.

Results Nine studies comprising 125,427 patients with a mean follow-up of 5.82 (0.08-12.3) years were included in
this review. Two of nine (22.2%) studies served as external validation analyses. Five (55.6%) studies reported on mean
AUC (strongest model range 0.77-0.997). Four (44.4%) studies reported mean concordance (strongest model range:
0.67-0.713). Two studies reported on Brier score, calibration intercept, and calibration slope, with values ranging from
0.10t0 0.18, 0.0051-0.006, and 0.96-0.97 amongst highest performing models, respectively. Four studies reported
calibration error, with all four studies demonstrating significant miscalibration at either two or five-year follow-ups
amongst 10 of 14 models assessed.
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Conclusion Machine learning models designed to predict the risk of revision or secondary knee injury demonstrate
variable discriminatory performance when evaluated with AUC or concordance metrics. Furthermore, there is
variable calibration, with several models demonstrating evidence of miscalibration at two or five-year marks. The lack
of external validation of existing models limits the generalizability of these findings. Future research should focus

on validating current models in addition to developing new multimodal neural networks to improve accuracy and

reliability.
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Introduction
The incidence of anterior cruciate ligament (ACL) tears
in the United States has been reported at 6.8 per 100,000
annually, making it the most common knee ligament
injury [1]. Failure rates amongst primary ACL recon-
struction (ACLR) procedures have been estimated to
range from 3.2 to 11.1% [2]. Several factors contribute to
postoperative failure, including traumatic reinjury, tunnel
malposition, and biological failure [3]. Beyond revisions,
secondary injuries such as meniscus tears and contralat-
eral injuries are reasons for overall reoperation after pri-
mary ACLR [4, 5]. The presence of concomitant meniscal
tears, such as ramp lesions with ACL injuries, has been
reported to range from 9 to 40% and is associated with a
7.7% rate of secondary meniscectomy [5]. Because of this,
it is important for surgeons to have a guide for predicting
risk profiles for secondary injury or revision after ACLR.
In recent years, the use of artificial intelligence (AI)
has become popular in orthopedic research [5, 6]. Spe-
cifically, machine learning (ML) models can learn com-
plex patterns and associations between variables and
outcomes from large datasets [7]. These relationships
can be used to generate predictive models incorporating
patient demographics, injury characteristics, and surgi-
cal techniques, which can be used in the clinical setting
[4]. Machine learning models can be classified into classi-
cal machine learning (Random Forest, Gradient Boosted
Regression Model (GBM) etc.) and deep learning with
neural networks (NN) (Artificial Neural Networks,
Multi-Layer Perceptron etc.). Classical machine learn-
ing models tend to be faster and require fewer resources,
however, they require manual feature selection, whereas
NN models are able to automatically learn features from
raw data [8, 9]. ML research has been performed in vari-
ous orthopedic domains, such as hip arthroplasty, hip
arthroscopy, and spinal cord injuries [10-12]. Therefore,
the application of ML in predicting objective outcomes
following ACLR offers great potential to be used to iden-
tify and manage patient expectations, tailor rehabilitation
regimens to maximize functional recovery, and to iden-
tify optimal candidates for specific surgical interventions.
While the use of AI in ACL literature is promising,
surgeons must familiarize themselves with the overall
results, advantages, and disadvantages of ML models
[13]. To date, no review has provided a comprehensive

summary of the utilization of ML models in predict-
ing postoperative outcomes after ACLR. Therefore, this
systematic review aims to summarize the statistical per-
formance of machine learning in predicting revision, sec-
ondary injury, or reoperations in ACLR, and to provide
a general overview of findings from these models. It was
hypothesized that ML models would be superior in pre-
dicting these outcomes compared to standard logistic
regression models.

Materials and methods

This systematic review was conducted according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) and Revised Assessment of
Multiple Systematic Reviews (R-AMSTAR) guidelines for
coordinating and reporting systematic reviews [14, 15].

Search strategy

Three online databases (PubMed, Medical Literature
Analysis and Retrieval System Online (MEDLINE),
Excerpta Medica dataBASE (EMBASE)) were searched
from database inception to February 6, 2024, to identify
literature on the use of ML to predict revision, second-
ary injury, or reoperation in ACLR. The search strategy is
described in Supplementary Table 1.

Inclusion criteria included the following: (1) studies
examining machine learning models to predict objec-
tive outcome measures (e.g. revision, reoperation, sec-
ondary injury) following ACLR, or external validity of
established databases using machine learning models
to predict the aforementioned outcomes, (2) simula-
tion-based or laboratory studies and (3) studies written
in English. Exclusion criteria included (1) systematic
reviews or meta-analyses, (2) text-book chapters, (3)
conference abstracts, (4) biomechanical studies, (5) lev-
els of evidence V (i.e. case reports), (6) case series with
less than five patients, and (7) cadaveric/animal studies.
References of included studies and of pertinent review
papers were manually searched to ensure all means of
study identification were exhausted. If multiple papers
reported the same outcomes using identical patient
cohorts, only the article with the largest sample size or
latest follow-up period was included. If multiple papers
presented overlapping but non-identical cohorts, all
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articles were included as the extent of patient overlap was
unable to be determined.

Study screening

Two authors independently performed title and abstract
screening. Disagreements at this stage were resolved
amongst reviewers, and a more senior author was con-
sulted for remaining discrepancies. During the full-text
stage, independent screening was performed and con-
flicts were resolved in a similar fashion.

Assessment of agreement

The inter-reviewer agreement was evaluated using a
kappa (k) statistic for screening. A priori classification
was defined according to the following criteria: a k of
0.91-0.99 was almost perfect agreement; a k of 0.71-0.90
was considerable agreement; a k of 0.61-0.70 was high
agreement; a Kk of 0.41-0.60 was moderate agreement; a
K of 0.21-0.40 was fair agreement and a « or ICC value of
0.20 or less was no agreement [16].

Quality assessment

The Methodological Index for Non-Randomized Stud-
ies (MINORS) criteria were used for methodological
quality assessment [16]. Based on the MINORS criteria,
non-comparative studies could get a maximum score
of 16. For non-comparative studies, classification was a
priori based on a previous systematic review: 0—4 indi-
cated very low-quality evidence, 5-7 indicated low-qual-
ity evidence, 8—12 indicated fair-quality evidence, and
scores 213 indicated high-quality evidence [17].

Data abstraction and outcomes

Two review authors independently extracted and summa-
rized data from included articles using a Google Sheets
(Google LLC, Mountain View, CA, USA) spreadsheet.
Demographic data such as number of patients, mean age,
patient sex, and follow-up times were recorded. Machine
learning specifics included the primary outcome of inter-
est (e.g. revision, secondary injury, or reoperation), sta-
tistical software used, models assessed, training and test
splits, and the handling of missing data. Adherence to
the Transparent Reporting of a multivariable prediction
model for Individual Prognosis or Diagnosis (TRIPOD)
guidelines was also assessed [18].

Discrimination, or classification accuracy, was assessed
using area under the receiver operating curve (AUC)
and concordance. AUC values range from 0 to 1, with
increasing values representing increased discriminatory
capacity [19]. Concordance is another representation of
AUC, ranging from 0.5 to 1, with increasing scores indi-
cating a model that more accurately identifies the most
true positive results and least false negative results [20,
21]. Calibration was assessed using calibration slope,
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intercept, and error. The calibration intercept is the ten-
dency of a model to overestimate results, with scores
approaching 0 indicating less frequent overprediction
or underprediction [20, 21]. Calibration slope identifies
if predictions are precise or extreme, with scores closer
to 1 indicating better model predictions across the range
of possible outcomes [20, 21]. Brier scores combine both
discrimination and calibration, with values ranging from
0 to 1, with lower scores indicating higher accuracy [22].
Factors deemed highly predictive for revision, second-
ary injury or reoperation were also extracted. The level
of evidence of each paper was reported according to the
authors’ statement or, if unstated, was reported using the
Oxford Centre for Evidence-Based Medicine (OCEBM)
guidelines [23].

Outcome reporting

Results were presented using descriptive statistics.
Means, ranges, percentages, and standard deviations
(SD) were calculated using Google Sheets software
(Google LLC, Mountain View, CA, USA).

Results

Literature search

The initial search resulted in 780 studies, of which 304
were duplicates. Of the 476 remaining, 20 were selected
for full-text screening after abstract and title screening.
Nine full-text articles satisfied the eligibility criteria and
were included in the final analysis (Fig. 1). There was a
high level of agreement during title and abstract screen-
ing (k=0.892, 95%CI 0.799-0.986) and perfect agreement
at the full-text stages (k=1.00).

Study quality

All studies included in this review were classified as level
IV evidence [24-32]. The mean MINORS score was 11.7
(range: 11-12). On average, the studies included were of
fair quality.

Study characteristics

Five of nine (55.6%) studies reported following the TRI-
POD [19] guidelines [24, 25, 27, 29, 30]. Two studies
examined the external validity of a previous machine-
learning model developed using source data from the
Norwegian Knee Ligament Registry (NKLR) database
[28, 30]. The other seven studies had their own internal
validation [24-27, 29, 31, 32]. Primary model develop-
ment was performed using the NLKR, DKLR, and Roch-
ester Epidemiology Project databases in three [28, 30,
31], two [30, 31], and three studies [24, 25, 27], respec-
tively. One study each used data from the American Col-
lege of Surgeons National Surgical Quality Improvement
Program database [26], Shanghai Sixth People’s Hospital
[32], and the STABILITY I trial [28].
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Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram

Demographics

This review included nine studies comprising 125,427
patients with a mean follow-up of 5.82 (range of means:
0.08-12.3) years. Of the eight studies that reported on

patient sex, 51,511 female patients (41.5%) were included.
The average age of patients at surgery was 26.73 (range
of means: 19-32) years. A detailed description of study
characteristics and demographics can be seen in Table 1.
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Machine learning methods

Primary outcomes were revision ACLR, secondary
meniscus injuries, graft failure, and all-cause reoperation
in five [26, 28-31], two [25, 27], one [32], and one study
[31], respectively. The most common model was Random
Forest/Random Survival Forest, used in six studies [24,
25, 27, 29, 31, 32] (66.6%). The second most used model
was the Cox Lasso model, assessed in four studies [28—
31] (44.4%). Two studies used neural networks, MLP-
Classifier (Multi-Layer Perceptron) [24] and Artificial
Neural Network (ANN) [26] (22.2%), respectively. With
respect to model evaluation, seven (77.8%) studies used
calibration [24, 25, 27-31], five (55.6%) used concordance
(including C-statistic AUROC) [27-31], four (44.4%)
used AUC (including Discrimination - AUROC) [24-26,
32], and two (22.2%) used Brier Score [25, 27].

Five (55.6%) studies used a 75/25 training/test split [24,
28-31], two (22.2%) used 0.632 bootstrapping with 1000
resampled datasets [25, 27], one (11.1%) used an 80/20
training/test split [26], and one (11.1%) used a 90/10
training/test split [32]. Seven studies reported on their
handling of missing data [24—27, 29-31], of which five
(71.4%) studies used multiple imputation [24, 25, 27, 29,
31]. One external validation study included patients with
data for features used in all five models from the source
study [30]. Another study excluded patients with miss-
ing data [26]. A full description of the Machine Learning
Methods can be seen in Table 2.

Feature selection

Various features were assessed when evaluating machine
learning models. Age and body mass index (BMI) were
examined in eight [24, 25, 27-32] (88.9%) and six [24-27,
29, 32] (66.7%) studies, respectively. Both sex [24—27, 32]
and time between injury and ACLR [28-32] were con-
sidered in five (55.6%) studies. Femur fixation method
[28-31] and KOOS QOL [28-31] were assessed in four
studies each (44.4%), while graft choice [28, 30, 31],
sports participation [24, 25, 32], and meniscal injury
[29, 31, 32] were examined in three (33.3%) studies each.
Other features selected can be seen in Table 3.

Model complete set predictive capacity

Area under the curve (AUC)

Five studies reported an AUC for their chosen models
[24-27, 32]. Overall, AUC for the strongest-performing
models in each study ranged from 0.77 to 0.997, indicat-
ing that these models ranged from fair to excellent dis-
crimination. The best-performing model was Random
Forest (AUC=0.997) when used to predict secondary
meniscus injury [25]. One study found that XGBoost was
the best model for predicting graft failure (AUC=0.944)
[32]. When Artificial Neural Network (ANN) was com-
pared with logistic regression, ANN was superior, with
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an AUC of 0.842 (good discrimination) compared to
0.601 (poor discrimination) for Logistic Regression (LR)
[26]. In another study, Random Forest was slightly supe-
rior to LR with AUCs of 0.77 and 0.70, respectively [24].

Concordance

Four studies reported on concordance [28-31]. Over-
all, concordance for the best-performing models in each
study ranged from 0.67 to 0.71, indicating that these
models ranged from poor to fair discrimination. The best-
performing model was Cox Lasso (Concordance: 0.71)
[28]. One study assessed the STABILITY trial and found
that when STABILITY patients with hamstring tendon
(HT) autografts in addition to lateral extra-articular
tenodesis (LET) were coded as receiving a bone-patellar
tendon-bone graft (BPTB) from the NKLR data, this sub-
group achieved the highest concordance, with scores of
0.713 (range: 0.634-0.791) and 0.713 (range: 0.64—0.79)
at one and two years, respectively [28]. In the same study,
the original Norwegian Algorithm reported concordance
of 0.686 (range: 0.65-0.72) and 0.684 (range: 0.65-0.72)
at one and two years, respectively [28].

One study reported predicting revision concordance
for several models over different time intervals. At the
one-year interval, the Cox Lasso model had the low-
est concordance, with a score of 0.59 (range: 0.56-0.61)
and 0.58 (range: 0.56-0.61) at two and five years. The
RSE, GB, and SL models all showed higher concordance
scores of 0.67 (ranges, RSF: 0.64—0.69, GB: 0.65—-0.70, SL:
0.65-0.69), maintaining their scores at two and five years
[31]. Another study reported concordance for the Cox
Lasso model of 0.678 at one year, 0.676 at two years, and
0.678 at five years [30]. One study found that the GAM
model had the highest concordance across all time points
(1-year: 0.687, 2-year: 0.685, 5-year: 0.684) [29]. This
was followed by Cox Lasso (1-year: 0.686, 2-year: 0.684,
5-year: 0.683), Random Forest (1-year: 0.672, 2-year:
0.670, 5-year: 0.670), and GBM (1-year: 0.669, 2-year:
0.666, 5-year: 0.665) [29].

Accuracy

Brier scores

Two studies reported on Brier Scores [25, 27]. Random
Forest was the most accurate model in a study reporting
on secondary meniscal injuries, and the studies had Brier
scores ranging from 0.10 to 0.18, indicating low deviation
of predictions and actual outcomes. One study found that
Random Forest was the most accurate, with a Brier score
of 0.10 (range: 0.09-0.12) at a mean follow-up of 12.3
(6.6—17.6) years, with key variables being time to return
to sport, visual analog scale (VAS) pain score at injury,
and time to surgery [25]. Another study predicting sec-
ondary meniscal injuries reported a Brier score of 0.106
(range: 0.029-0.183) at a minimum two-year follow-up
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Table 2 Study methods
Author Primary Outcome Statistical Models Model Evaluation  Training/Test Missing
(year) Software and ML Split Data
algorithms Method
Martin Revision R (Version4.1.11R Cox lasso Concordance - Har-  75/25 Multiple
(2023) Core Team) Random survival forest rell C-index imputa-
Gradient boosting Calibration tion
Super learner
Martin Revision R (Version 3.6.1) Cox Lasso Concordance - Har-  NR (external Patients
(2022a) rell C-index validation included
Calibration study - original if they
model 75/25)  had data
for five
predic-
tive mod-
els from
original
model
Martin Revision R (Version 3.6.1) Cox Lasso Calibration 75/25 Multiple
(2022b) Survival Random Forest Concordance imputa-
Generalized Additive Model (GAM) tion
Gradient Boosted Regression Model
(GBM)
Johnson All-cause SciPy version 1.6.2  MLPClassifier AUC 75/25 Multiple
(2023) re-operation GaussianNB Calibration imputa-
LogisticRegression AUPRC tion
KNeighborsClassifier F1
BaggingClassifier Recall
RandomForestClassifier Accuracy
AdaBoostClassifier Precision
GradientBoostingClassifier
XGBClassifier
Lopez ACLR post-op TensorFlow Python  Artificial Neural Network ML AUC 80/20 Excluded
(2023) outcomes (revision  open-source coding  Logistic Regression Accuracy
included) platform (Google
Brain, Alphabet Inc,
Mountain View, CA)
Ye (2022) Graft failure SPSS (Version 25.0;  Logjistic Regression AUC 90/10 NR
IBM Corp) Gaussian Naive Bayes Accuracy
Random Forest F1
XGBoost
Isotonic XGBoost
Sigmoid XGBoost
Martin Revision R (RStudio Cox Lasso Concordance - Har-  75/25 NA
(2024) 2022.07.1) rell's C-index
Calibration
Jurgens- Secondary menis-  R4.1.2 using RStu- ~ SVM Discrimination 0.632 boot- Multiple
meier cus tear dio version 1.4.1717  Random Forest - AUROC strapping imputa-
(2023) (RStudio, Boston, XGBoost Calibration with 1000 tion
MA) Elastic Net Brier score resampled
datasets
Lu (2022) Secondary menis- R 4.1.2 using RStu- Random Survival Forests C-statistic (AUROC)  0.632 boot- Multiple
cus tear dio version 1.2.5001 (Concordance) strapping imputa-
(RStudio, Boston, Calibration with 1000 tion
MA). Brier Score resampled
datasets

ML: machine learning, AUC: area under the curve, AUROC: area under the receiver operating curve, AUPRC: area under the precision-recall graph, ACLR: anterior
cruciate ligament reconstruction, NR: not reported, MA: Massachusetts, CA: California, NR: not reported, NA: not applicable
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using the Random Survival Forest model, with key vari-
ables being time to return to sport, VAS pain score at
injury, and hypermobility [27].

Calibration intercept and calibration slope

Two studies looked at calibration intercept and slope [25,
27]. The best-performing models for calibration interval
reported scores ranging from 0.0051 to 0.006. The ran-
dom survival forest model performed best when predict-
ing secondary meniscal injury after ACLR with a score of
0.0051 (-0.014 to 0.024) at a minimum two-year follow-
up [27]. The positive intercept indicates that included ML
models tend to underestimate the risk; however, the con-
fidence interval suggests that the systemic underpredic-
tion is not statistically significant. The best-performing
models for calibration slope reported slopes from 0.96
to 0.97, with Random Survival Forest reporting the high-
est score (0.97) at a minimum two-year follow-up in a
study predicting second meniscal injury [27]. XGBoost

Table 4 Multiple Imputation Data

Multiple
Imputation
Data Set
Author Concordance (95 Cl) Calibration
Martin 1 year: 1 year:
(2023) Cox Lasso 0.59 (0.56-0.61) Cox Lasso 8.35, p=0.039
RSF: 0.66 (0.64-0.69) RSF4.17,p=0.244
GB: 0.68 (0.65-0.70) GB:7.57,p=0.056
SL: 0.67 (0.65-0.70) SL:7.99, p=0.046
2 year: 2 year:
Cox Lasso 0.59 (0.56-0.61) Cox Lasso 8.81, p=0.032
RSF: 0.67 (0.65-0.70) RSF: 8.96, p=0.030
GB: 0.67 (0.65-0.70) GB:8.98, p=0.030
SL:0.67 (0.65-0.70) SL:8.34,p=0.039
5year: 5year:
Cox Lasso 0.58 (0.56-0.61) Cox Lasso: 8.30, p=0.040
RSF: 0.67 (0.65-0.70) RSF:8.95, p=0.030
GB: 0.67 (0.65-0.69) GB: 11.53, p=0.009
SL:0.67 (0.65-0.70) SL: 14.05, p=0.003
Original
Data Set
Martin 1 year: 1 year:
(2023) Cox Lasso 0.59 (0.56-0.61) Cox Lasso 7.19,n.s
RSF: 0.67 (0.64-0.69) RSF:5.54,n.s
GB: 0.67 (0.65-0.70) GB:748,n.s
SL:0.67 (0.65-0.69) SL:8.67,p=0.034
2 year: 2 year:
Cox Lasso 0.58 (0.56-0.61) Cox Lasso 8.17,p=0.043
RSF: 0.67 (0.64-0.69) RSF:6.42,n.s
GB: 0.67 (0.64-0.69) GB:4.53,n.s
SL: 0.67 (0.64-0.69) SL:4.10,n.s
5 year: 5 year:

Cox Lasso 0.58 (0.56-0.61)
RSF: 0.67 (0.65-0.69)

GB: 0.67 (0.64-0.69)

SL: 0.67 (0.64-0.69)

Cox Lasso: 11.37, p=0.01
RSF:9.27, p=0.026
GB:11.07,p=0.011
SL:11.82, p=0.008

KOOS: knee osteoarthritis and outcome score, Cl: confidence interval, GB:
gradient boosted regression model, RSF: random survival forest, SL: super
learner, GAM: generalized additive model, n.s: not significant
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was similar with a slope of 0.957 (0.952—-0.962) at a mean
follow-up of 12.3 (6.6—17.6) years in a study predicting
second meniscal injuries [25]. These values suggest that
the models used tend to slightly overestimate risk, plac-
ing too much importance on predicting features. Overall,
both studies revealed that the calibration intercept and
slope were most accurate using the predictive features of
time to return to sport and VAS pain score.

Calibration error

Calibration error was measured in four studies [28-31].
One study reported calibration errors for various mod-
els at one-, two-, and five-year marks [31]. At one year,
the Cox Lasso, Random Survival Forest (RSF), and Gra-
dient Boosting (GB) models all had non-significant cali-
bration errors, whereas the Super Learner (SL) model
demonstrated a calibration error of 8.67 (p=0.034). At
two years, the Cox Lasso model showed a significant cali-
bration error of 8.17 (p=0.043). At five years, calibration
errors were significant in all models: 11.37 (p=0.01) for
Cox Lasso, 9.27 (p=0.026) for RSF, 11.07 (p=0.011) for
GB, and 11.82 (p=0.008) for SL. One study reported sig-
nificant calibration errors for the Cox Lasso model, with
errors of 22.24 (p<0.001) at one year, 11.82 (p=0.008)
at two years, and 13.98 (p=0.003) at five years [30]. One
study found significant miscalibration at two years, with
calibration errors of 11.35 (p=0.01) for Cox Lasso, 11.66
(p=0.009) for Random Forest, and 11.19 (p=0.011) for
Generalized Additive Model (GAM). None of the mod-
els showed significant calibration errors at five years.
Another study externally validated the original Norwe-
gian Algorithm using the STABILITY trial. They found
that the subgroup (HT+LET patients coded as having
BPTB grafts) with the highest concordance had a signifi-
cant calibration error of 11.7 (p<0.01) at two years [28].
The original Norwegian Algorithm also showed a signifi-
cant calibration error of 11.3 (p=0.01) at two years. Other
subgroups analyzed showed evidence of miscalibration at
one and two years, respectively (p<0.01). Complete data
from the model set can be seen in Table 3.

Multiple imputation data

Only one study reported data on multiple imputation
analyses [31]. The concordance data from this study was
not significantly different (p<0.05) from the original
set. The specific data can be seen in Table 4. However,
the calibration data revealed an increased statistically
significant calibration error in the multiple imputation
cohort. At one year, two of the four models showed mis-
calibration (p>0.05), and at two and five years, all models
showed significant miscalibration (p<0.05). The calibra-
tion error at one year ranged from 4.17 to 8.35. At two
years, it ranged from 8.34 to 8.98; at five years, it ranged
from 8.30 to 14.05.
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Factors predicting outcomes

Various features were considered most important pre-
dictive features (top three) by the assessed models. Years
from injury to surgery were considered most important
by four models (Random Forest, SL, GBM, GAM). Graft
choice was considered most important by three models
(Cox Lasso, GBM, GAM). Three models considered age
at surgery most important (Random Forest, SL, GBM).
Femur fixation was considered most important by three
models (Cox Lasso, GBM, and GAM). A comprehensive
list of the importance of the other features can be seen in
Table 5.

Discussion

The primary finding of this systematic review was that
existing machine learning models to predict secondary
injury or surgery after ACLR are variable in terms of dis-
criminatory performance. Overall, Random Forest mod-
els were the most effective at predicting outcomes when
using AUC, Brier, Calibration slopes and intercepts. Cox-
Lasso was the most effective model when using concor-
dance. Of the four studies reporting on AUC, values were
relatively high, ranging from 0.77 to 0.997. However, of
the four studies reporting on concordance, the mean
values of all studies were closer to 0.5 than 1.0. Further-
more, there was variability when evaluating calibration.
While the two studies reporting on Brier scores, calibra-
tion slope, and intercept reported minimal evidence of
miscalibration in highest performing models, the four
studies reporting on calibration error found significant
evidence of miscalibration at either two and five-year
follow-ups amongst 10 of 14 models assessed. Factors
deemed important for secondary ACLR or injury (e.g.
secondary meniscus injury, graft failure) were also vari-
able from model to model and study to study.

Machine learning has become incredibly popular in
developing models to predict postoperative outcomes,
and there is immense potential benefit in using these
analyses to generate prediction models and calcula-
tors. However, this review demonstrates that there is
still room for improvement in model performance. One
recent study of 104 patients reported AUC values for
several factors predictive of revision, ranging from 0.756
to 0.813 [33]. These values fall in the range of the pre-
dictive models that reported on AUC included in this
review. Some models in this review had AUCs over 0.95
for predicting secondary meniscus injuries and revision,
suggesting strong discriminatory power [25, 32]. How-
ever, it is notable that other studies providing C-statistics
reported relatively low discrimination, with mean values
all being under 0.75. The findings in this review align
with a recent systematic review on ML models in various
orthopaedic sub-specialties [4]. They found that in spine
surgery, hip arthroscopy, total joint arthroplasty, and
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shoulder arthroplasty, the C-statistics ranged from 0.65
to 0.92, 0.51-0.94, 0.63—-0.89, and 0.70-0.95, respectively.
While some models from this review had low C-statistics
(e.g., closer to 0.5), others had values closer to 1 [4]. They
also noted the lack of external validation and inconsistent
adherence to predictive modeling guidelines. Therefore,
it is possible that existing models investigating revision
and secondary injury risk may be missing key important
factors.

External validation studies are essential to assess
the generalizability of machine learning models. One
included study attempted to externally validate the revi-
sion prediction model from the original NKLR dataset
using the Danish Knee Ligament Registry (DKLR) [30].
Concordance was similar between populations (DKLR:
0.68; NKLR: 0.68-0.69); however, there was significant
evidence of miscalibration at one, two, and five years
when evaluating the DKLR group. Furthermore, com-
pared to the NKLR dataset, calibration error at one and
five years was greater (4.89 versus 22.24 and 6.19 and
13.98 respectively) [29]. The other external validation
study assessing the STABILITY trial using the NKLR
model reported a concordance of 0.71; however, it found
significant evidence of miscalibration at two years. While
two of six studies demonstrated strong calibration, these
models have not been externally validated like that of the
NKLR database. Having models demonstrate strong cali-
bration and concordance at the two-year mark is incred-
ibly important as one in 17 (6%) of ACLR patients will
suffer a second ACL injury within two years of the index
operation. Furthermore, rates of secondary ACL injury
(e.g. ipsilateral or contralateral) at five, ten, and fifteen
years have been reported to be 12%, 27%, and 31% [34].
Continuous evaluation of established and novel machine
learning algorithms is incredibly important for prediction
calculators to translate effectively into clinical practice.

Factors that were not included in the current review
that may be important when considering secondary
injury risk include concomitant lateral extra-articular
tenodesis (LET) procedures, meniscus status, medial
collateral ligament (MCL) injuries, and elevated poste-
rior tibial slope (PTS) (or effects of bone morphology).
The STABILITY I study, a large multicenter randomized
controlled trial (RCT) comparing ACLR with and with-
out LET, found that at 24 months postoperative, the LET
group had a rupture rate of 4.1% compared to 11.2% in
the non-LET group (p=0.004) [35]. A secondary analy-
sis from this trial demonstrated that younger age, greater
posterior tibial slope, high-grade knee laxity, and earlier
return to sport all contributed to increased odds of rup-
ture. Larger hamstring autograft diameter was protective
in reducing the odds of knee laxity in the form of asym-
metric pivot shift [13]. Several of these factors were not
a part of the risk calculators developed from machine
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Author (year)

Factors predicting outcomes (in order of importance)

Martin (2023)

Martin (2022a)
Martin (2022b)

Lopez (2023)

Johnson (2023)

Ye (2022)

Martin (2024)

Random forest:

age at surgery

age atinjury

years from injury to surgery
KOOS QOL Cox model (lasso):
femur fix - susp/cort

graft qt/BQT

fix comb: interfer/susp

Graft other

Femur fix interf.

Grand boosted regression:
age at surgery

years from injury to surgery
graft

age atinjury

KOOS QOL

Super learner:

age at surgery

years from injury to surgery KOOS QOL
Graft hamstring

age at surgery

NA - External validation study
Cox-Lasso:

graft choice

femoral fixation

KOOS QoL at time of surgery
Years from injury to surgery
Age at the time of surgery
Random Forest:

age at time of injury

tibial fixation device

fixation device combination
GAM:

Graft

Years from injury to surgery
Femur fixation other

KOOS QOL at surgery

GBM:

Age at surgery

Years from injury to surgery
Femur fixation

KOOS QOL at surgery
Surgery Setting

Operative Time

BMI

Age

Race

Systemic Inflammatory Disease
Distal Tear Location
Concomitant MCL Repair
VAS

Proximal Tear Location
Medial Meniscal Resection
Participation In Competitive Sports
Posterior Tibial Slope

Graft Diameter Of PLB

Male Gender

NA - External Validation Study
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Table 5 (continued)
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Author (year)

Factors predicting outcomes (in order of importance)

Jurgensmeier (2023)

Lu (2022)

Time to RTS

VAS Pain Score at injury

Time to surgery

Age at injury

Tear location

Time To RTS

VAS At Injury Consultation
Hypermobility

Involvement In Noncontact Sports
African American Race

RTS: return to sport, VAS: visual analogue scale, PLB: posterolateral bundle, MCL: medial collateral ligament, BMI: body mass index, KOOS: knee osteoarthritis and
outcome score, QOL: quality of life, GBM: gradient boosted regression model, GAM: generalized additive model, NA: not applicable

learning algorithms. Specifically, some studies suggest
that an increased PTS may place strain on the ACL,
increasing the risk of failure [36]. Certain groups have
proposed a threshold of 12 degrees, and have advocated
for the use of slope-reducing osteotomies to reduce the
PTS, especially in revision settings [37].

Machine learning analyses offer immense potential in
terms of predictive capacity, however it is clear that there
is much room for improvement, especially in the field of
predicting revision or secondary knee injury after ACLR.
With the risk of revision still being an issue, this review
advocates for including factors such as the inclusion of
LET procedures, graft diameter, meniscus status, and
elevated posterior tibial slope in developing these mod-
els. Furthermore, future studies are encouraged to con-
tinue to attempt to externally validate existing and novel
models to assess generalizability. Demonstrating strong
concordance or AUC and little evidence of miscalibra-
tion both in the short-term and long-term is essential in
order to implement risk-calculators in the clinical setting.
There are a few limitations to this review. First, there were
only two inclusions that served as external validation
studies, which limit the generalizability of the reported
findings. Second, only 55% of studies reported adhering
to the TRIPOD guidelines for diagnostic studies, indicat-
ing high variability in the quality of individual datasets
and reporting of results. This limitation is also noted in
a recent systematic review on ML models in orthopaedic
trauma, which reported a TRIPOD statement adherence
of 62% [38], highlighting the need for better adherence to
reporting guidelines. Third, there were limited amounts
of comparisons with traditional multivariate logistic
regression analyses, preventing the ability to make con-
clusive statements about the superiority or inferiority
of machine learning models when the two methods are
compared. Only two studies in this review included NN
models, which is another source of weakness. NN mod-
elling would allow for the inclusion of image data and,
thus, the creation of multimodal models that incorporate
images and clinical variables. In this review, the NNs did
not perform better than classical models, which may be

because NNs require more resources to create and larger
datasets to avoid overfitting. Ultimately, current ACLR
prediction models mainly incorporate classical ML, as
opposed to multimodel prediction models. Multicenter
collaboration based on high-quality prospective data-
bases and registries, with agreement between investiga-
tors on feature inclusion, is needed for high-quality ML
prediction algorithms. Only nine studies were included
in this review, all of which were level IV evidence, pre-
venting the ability to perform a meta-analysis and pool
machine learning performance statistics. The average
quality of the included studies was fair, which limits the
reliability of the findings and highlights the need for fur-
ther high-quality research in this domain. Finally, it is
important to note that these predictive models are pre-
liminary and have not been assessed in a prospective
cohort of patients. Future adequately powered longitudi-
nal studies testing these models are needed to ascertain
their external validity.

Conclusion

Machine learning models designed to predict the risk of
revision or secondary knee injury demonstrate variable
discriminatory performance when evaluated with AUC
or concordance metrics. Furthermore, there is variable
calibration, with several models demonstrating evidence
of miscalibration at two or five-year marks. A key limi-
tation of this study is the lack of external validation of
existing models, which restricts their generalizability.
Future efforts should focus on validating current mod-
els in addition to developing and integrating multimodal
neural networks to improve predictive accuracy and reli-
ability. Further comparisons with traditional multivariate
logistic regression analysis are also needed to validate the
benefit of more advanced models.
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