
S YS T E M AT I C  R E V I E W Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:​​​//creativecommo​ns.​​org/lice​ns​e​s/by/4.0/.

Blackman et al. BMC Musculoskeletal Disorders           (2025) 26:16 
https://doi.org/10.1186/s12891-024-08228-w

BMC Musculoskeletal 
Disorders

*Correspondence:
Kristian Samuelsson
kristian.samuelsson@gu.se

Full list of author information is available at the end of the article

Abstract
Background  To summarize the statistical performance of machine learning in predicting revision, secondary knee 
injury, or reoperations following anterior cruciate ligament reconstruction (ACLR), and to provide a general overview 
of the statistical performance of these models.

Methods  Three online databases (PubMed, MEDLINE, EMBASE) were searched from database inception to February 
6, 2024, to identify literature on the use of machine learning to predict revision, secondary knee injury (e.g. anterior 
cruciate ligament (ACL) or meniscus), or reoperation in ACLR. The authors adhered to the PRISMA and R-AMSTAR 
guidelines as well as the Cochrane Handbook for Systematic Reviews of Interventions. Demographic data and 
machine learning specifics were recorded. Model performance was recorded using discrimination, area under the 
curve (AUC), concordance, calibration, and Brier score. Factors deemed predictive for revision, secondary injury or 
reoperation were also extracted. The MINORS criteria were used for methodological quality assessment.

Results  Nine studies comprising 125,427 patients with a mean follow-up of 5.82 (0.08–12.3) years were included in 
this review. Two of nine (22.2%) studies served as external validation analyses. Five (55.6%) studies reported on mean 
AUC (strongest model range 0.77–0.997). Four (44.4%) studies reported mean concordance (strongest model range: 
0.67–0.713). Two studies reported on Brier score, calibration intercept, and calibration slope, with values ranging from 
0.10 to 0.18, 0.0051–0.006, and 0.96–0.97 amongst highest performing models, respectively. Four studies reported 
calibration error, with all four studies demonstrating significant miscalibration at either two or five-year follow-ups 
amongst 10 of 14 models assessed.
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Introduction
The incidence of anterior cruciate ligament (ACL) tears 
in the United States has been reported at 6.8 per 100,000 
annually, making it the most common knee ligament 
injury [1]. Failure rates amongst primary ACL recon-
struction (ACLR) procedures have been estimated to 
range from 3.2 to 11.1% [2]. Several factors contribute to 
postoperative failure, including traumatic reinjury, tunnel 
malposition, and biological failure [3]. Beyond revisions, 
secondary injuries such as meniscus tears and contralat-
eral injuries are reasons for overall reoperation after pri-
mary ACLR [4, 5]. The presence of concomitant meniscal 
tears, such as ramp lesions with ACL injuries, has been 
reported to range from 9 to 40% and is associated with a 
7.7% rate of secondary meniscectomy [5]. Because of this, 
it is important for surgeons to have a guide for predicting 
risk profiles for secondary injury or revision after ACLR.

In recent years, the use of artificial intelligence (AI) 
has become popular in orthopedic research [5, 6]. Spe-
cifically, machine learning (ML) models can learn com-
plex patterns and associations between variables and 
outcomes from large datasets [7]. These relationships 
can be used to generate predictive models incorporating 
patient demographics, injury characteristics, and surgi-
cal techniques, which can be used in the clinical setting 
[4]. Machine learning models can be classified into classi-
cal machine learning (Random Forest, Gradient Boosted 
Regression Model (GBM) etc.) and deep learning with 
neural networks (NN) (Artificial Neural Networks, 
Multi-Layer Perceptron etc.). Classical machine learn-
ing models tend to be faster and require fewer resources, 
however, they require manual feature selection, whereas 
NN models are able to automatically learn features from 
raw data [8, 9]. ML research has been performed in vari-
ous orthopedic domains, such as hip arthroplasty, hip 
arthroscopy, and spinal cord injuries [10–12]. Therefore, 
the application of ML in predicting objective outcomes 
following ACLR offers great potential to be used to iden-
tify and manage patient expectations, tailor rehabilitation 
regimens to maximize functional recovery, and to iden-
tify optimal candidates for specific surgical interventions.

While the use of AI in ACL literature is promising, 
surgeons must familiarize themselves with the overall 
results, advantages, and disadvantages of ML models 
[13]. To date, no review has provided a comprehensive 

summary of the utilization of ML models in predict-
ing postoperative outcomes after ACLR. Therefore, this 
systematic review aims to summarize the statistical per-
formance of machine learning in predicting revision, sec-
ondary injury, or reoperations in ACLR, and to provide 
a general overview of findings from these models. It was 
hypothesized that ML models would be superior in pre-
dicting these outcomes compared to standard logistic 
regression models.

Materials and methods
This systematic review was conducted according to the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) and Revised Assessment of 
Multiple Systematic Reviews (R-AMSTAR) guidelines for 
coordinating and reporting systematic reviews [14, 15].

Search strategy
Three online databases (PubMed, Medical Literature 
Analysis and Retrieval System Online (MEDLINE), 
Excerpta Medica dataBASE (EMBASE)) were searched 
from database inception to February 6, 2024, to identify 
literature on the use of ML to predict revision, second-
ary injury, or reoperation in ACLR. The search strategy is 
described in Supplementary Table 1.

Inclusion criteria included the following: (1) studies 
examining machine learning models to predict objec-
tive outcome measures (e.g. revision, reoperation, sec-
ondary injury) following ACLR, or external validity of 
established databases using machine learning models 
to predict the aforementioned outcomes, (2) simula-
tion-based or laboratory studies and (3) studies written 
in English. Exclusion criteria included (1) systematic 
reviews or meta-analyses, (2) text-book chapters, (3) 
conference abstracts, (4) biomechanical studies, (5) lev-
els of evidence V (i.e. case reports), (6) case series with 
less than five patients, and (7) cadaveric/animal studies. 
References of included studies and of pertinent review 
papers were manually searched to ensure all means of 
study identification were exhausted. If multiple papers 
reported the same outcomes using identical patient 
cohorts, only the article with the largest sample size or 
latest follow-up period was included. If multiple papers 
presented overlapping but non-identical cohorts, all 

Conclusion  Machine learning models designed to predict the risk of revision or secondary knee injury demonstrate 
variable discriminatory performance when evaluated with AUC or concordance metrics. Furthermore, there is 
variable calibration, with several models demonstrating evidence of miscalibration at two or five-year marks. The lack 
of external validation of existing models limits the generalizability of these findings. Future research should focus 
on validating current models in addition to developing new multimodal neural networks to improve accuracy and 
reliability.
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articles were included as the extent of patient overlap was 
unable to be determined.

Study screening
Two authors independently performed title and abstract 
screening. Disagreements at this stage were resolved 
amongst reviewers, and a more senior author was con-
sulted for remaining discrepancies. During the full-text 
stage, independent screening was performed and con-
flicts were resolved in a similar fashion.

Assessment of agreement
The inter-reviewer agreement was evaluated using a 
kappa (κ) statistic for screening. A priori classification 
was defined according to the following criteria: a κ of 
0.91–0.99 was almost perfect agreement; a κ of 0.71–0.90 
was considerable agreement; a k of 0.61–0.70 was high 
agreement; a κ of 0.41–0.60 was moderate agreement; a 
κ of 0.21–0.40 was fair agreement and a κ or ICC value of 
0.20 or less was no agreement [16].

Quality assessment
The Methodological Index for Non-Randomized Stud-
ies (MINORS) criteria were used for methodological 
quality assessment [16]. Based on the MINORS criteria, 
non-comparative studies could get a maximum score 
of 16. For non-comparative studies, classification was a 
priori based on a previous systematic review: 0–4 indi-
cated very low-quality evidence, 5–7 indicated low-qual-
ity evidence, 8–12 indicated fair-quality evidence, and 
scores ≥ 13 indicated high-quality evidence [17].

Data abstraction and outcomes
Two review authors independently extracted and summa-
rized data from included articles using a Google Sheets 
(Google LLC, Mountain View, CA, USA) spreadsheet. 
Demographic data such as number of patients, mean age, 
patient sex, and follow-up times were recorded. Machine 
learning specifics included the primary outcome of inter-
est (e.g. revision, secondary injury, or reoperation), sta-
tistical software used, models assessed, training and test 
splits, and the handling of missing data. Adherence to 
the Transparent Reporting of a multivariable prediction 
model for Individual Prognosis or Diagnosis (TRIPOD) 
guidelines was also assessed [18].

Discrimination, or classification accuracy, was assessed 
using area under the receiver operating curve (AUC) 
and concordance. AUC values range from 0 to 1, with 
increasing values representing increased discriminatory 
capacity [19]. Concordance is another representation of 
AUC, ranging from 0.5 to 1, with increasing scores indi-
cating a model that more accurately identifies the most 
true positive results and least false negative results [20, 
21]. Calibration was assessed using calibration slope, 

intercept, and error. The calibration intercept is the ten-
dency of a model to overestimate results, with scores 
approaching 0 indicating less frequent overprediction 
or underprediction [20, 21]. Calibration slope identifies 
if predictions are precise or extreme, with scores closer 
to 1 indicating better model predictions across the range 
of possible outcomes [20, 21]. Brier scores combine both 
discrimination and calibration, with values ranging from 
0 to 1, with lower scores indicating higher accuracy [22]. 
Factors deemed highly predictive for revision, second-
ary injury or reoperation were also extracted. The level 
of evidence of each paper was reported according to the 
authors’ statement or, if unstated, was reported using the 
Oxford Centre for Evidence-Based Medicine (OCEBM) 
guidelines [23].

Outcome reporting
Results were presented using descriptive statistics. 
Means, ranges, percentages, and standard deviations 
(SD) were calculated using Google Sheets software 
(Google LLC, Mountain View, CA, USA).

Results
Literature search
The initial search resulted in 780 studies, of which 304 
were duplicates. Of the 476 remaining, 20 were selected 
for full-text screening after abstract and title screening. 
Nine full-text articles satisfied the eligibility criteria and 
were included in the final analysis (Fig.  1). There was a 
high level of agreement during title and abstract screen-
ing (κ = 0.892, 95%CI 0.799–0.986) and perfect agreement 
at the full-text stages (κ = 1.00).

Study quality
All studies included in this review were classified as level 
IV evidence [24–32]. The mean MINORS score was 11.7 
(range: 11–12). On average, the studies included were of 
fair quality.

Study characteristics
Five of nine (55.6%) studies reported following the TRI-
POD [19] guidelines [24, 25, 27, 29, 30]. Two studies 
examined the external validity of a previous machine-
learning model developed using source data from the 
Norwegian Knee Ligament Registry (NKLR) database 
[28, 30]. The other seven studies had their own internal 
validation [24–27, 29, 31, 32]. Primary model develop-
ment was performed using the NLKR, DKLR, and Roch-
ester Epidemiology Project databases in three [28, 30, 
31], two [30, 31], and three studies [24, 25, 27], respec-
tively. One study each used data from the American Col-
lege of Surgeons National Surgical Quality Improvement 
Program database [26], Shanghai Sixth People’s Hospital 
[32], and the STABILITY I trial [28].
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Demographics
This review included nine studies comprising 125,427 
patients with a mean follow-up of 5.82 (range of means: 
0.08–12.3) years. Of the eight studies that reported on 

patient sex, 51,511 female patients (41.5%) were included. 
The average age of patients at surgery was 26.73 (range 
of means: 19–32) years. A detailed description of study 
characteristics and demographics can be seen in Table 1.

Fig. 1  Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram
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Machine learning methods
Primary outcomes were revision ACLR, secondary 
meniscus injuries, graft failure, and all-cause reoperation 
in five [26, 28–31], two [25, 27], one [32], and one study 
[31], respectively. The most common model was Random 
Forest/Random Survival Forest, used in six studies [24, 
25, 27, 29, 31, 32] (66.6%). The second most used model 
was the Cox Lasso model, assessed in four studies [28–
31] (44.4%). Two studies used neural networks, MLP-
Classifier (Multi-Layer Perceptron) [24] and Artificial 
Neural Network (ANN) [26] (22.2%), respectively. With 
respect to model evaluation, seven (77.8%) studies used 
calibration [24, 25, 27–31], five (55.6%) used concordance 
(including C-statistic AUROC) [27–31], four (44.4%) 
used AUC (including Discrimination - AUROC) [24–26, 
32], and two (22.2%) used Brier Score [25, 27].

Five (55.6%) studies used a 75/25 training/test split [24, 
28–31], two (22.2%) used 0.632 bootstrapping with 1000 
resampled datasets [25, 27], one (11.1%) used an 80/20 
training/test split [26], and one (11.1%) used a 90/10 
training/test split [32]. Seven studies reported on their 
handling of missing data [24–27, 29–31], of which five 
(71.4%) studies used multiple imputation [24, 25, 27, 29, 
31]. One external validation study included patients with 
data for features used in all five models from the source 
study [30]. Another study excluded patients with miss-
ing data [26]. A full description of the Machine Learning 
Methods can be seen in Table 2.

Feature selection
Various features were assessed when evaluating machine 
learning models. Age and body mass index (BMI) were 
examined in eight [24, 25, 27–32] (88.9%) and six [24–27, 
29, 32] (66.7%) studies, respectively. Both sex [24–27, 32] 
and time between injury and ACLR [28–32] were con-
sidered in five (55.6%) studies. Femur fixation method 
[28–31] and KOOS QOL [28–31] were assessed in four 
studies each (44.4%), while graft choice [28, 30, 31], 
sports participation [24, 25, 32], and meniscal injury 
[29, 31, 32] were examined in three (33.3%) studies each. 
Other features selected can be seen in Table 3.

Model complete set predictive capacity
Area under the curve (AUC)
Five studies reported an AUC for their chosen models 
[24–27, 32]. Overall, AUC for the strongest-performing 
models in each study ranged from 0.77 to 0.997, indicat-
ing that these models ranged from fair to excellent dis-
crimination. The best-performing model was Random 
Forest (AUC = 0.997) when used to predict secondary 
meniscus injury [25]. One study found that XGBoost was 
the best model for predicting graft failure (AUC = 0.944) 
[32]. When Artificial Neural Network (ANN) was com-
pared with logistic regression, ANN was superior, with 

an AUC of 0.842 (good discrimination) compared to 
0.601 (poor discrimination) for Logistic Regression (LR) 
[26]. In another study, Random Forest was slightly supe-
rior to LR with AUCs of 0.77 and 0.70, respectively [24].

Concordance
Four studies reported on concordance [28–31]. Over-
all, concordance for the best-performing models in each 
study ranged from 0.67 to 0.71, indicating that these 
models ranged from poor to fair discrimination. The best-
performing model was Cox Lasso (Concordance: 0.71) 
[28]. One study assessed the STABILITY trial and found 
that when STABILITY patients with hamstring tendon 
(HT) autografts in addition to lateral extra-articular 
tenodesis (LET) were coded as receiving a bone-patellar 
tendon-bone graft (BPTB) from the NKLR data, this sub-
group achieved the highest concordance, with scores of 
0.713 (range: 0.634–0.791) and 0.713 (range: 0.64–0.79) 
at one and two years, respectively [28]. In the same study, 
the original Norwegian Algorithm reported concordance 
of 0.686 (range: 0.65–0.72) and 0.684 (range: 0.65–0.72) 
at one and two years, respectively [28].

One study reported predicting revision concordance 
for several models over different time intervals. At the 
one-year interval, the Cox Lasso model had the low-
est concordance, with a score of 0.59 (range: 0.56–0.61) 
and 0.58 (range: 0.56–0.61) at two and five years. The 
RSF, GB, and SL models all showed higher concordance 
scores of 0.67 (ranges, RSF: 0.64–0.69, GB: 0.65–0.70, SL: 
0.65–0.69), maintaining their scores at two and five years 
[31]. Another study reported concordance for the Cox 
Lasso model of 0.678 at one year, 0.676 at two years, and 
0.678 at five years [30]. One study found that the GAM 
model had the highest concordance across all time points 
(1-year: 0.687, 2-year: 0.685, 5-year: 0.684) [29]. This 
was followed by Cox Lasso (1-year: 0.686, 2-year: 0.684, 
5-year: 0.683), Random Forest (1-year: 0.672, 2-year: 
0.670, 5-year: 0.670), and GBM (1-year: 0.669, 2-year: 
0.666, 5-year: 0.665) [29].

Accuracy
Brier scores
Two studies reported on Brier Scores [25, 27]. Random 
Forest was the most accurate model in a study reporting 
on secondary meniscal injuries, and the studies had Brier 
scores ranging from 0.10 to 0.18, indicating low deviation 
of predictions and actual outcomes. One study found that 
Random Forest was the most accurate, with a Brier score 
of 0.10 (range: 0.09–0.12) at a mean follow-up of 12.3 
(6.6–17.6) years, with key variables being time to return 
to sport, visual analog scale (VAS) pain score at injury, 
and time to surgery [25]. Another study predicting sec-
ondary meniscal injuries reported a Brier score of 0.106 
(range: 0.029–0.183) at a minimum two-year follow-up 
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Table 2  Study methods
Author 
(year)

Primary Outcome Statistical 
Software and ML 
algorithms

Models Model Evaluation Training/Test 
Split

Missing 
Data 
Method

Martin 
(2023)

Revision R (Version 4.1.11 R 
Core Team)

Cox lasso
Random survival forest
Gradient boosting
Super learner

Concordance - Har-
rell C-index
Calibration

75/25 Multiple 
imputa-
tion

Martin 
(2022a)

Revision R (Version 3.6.1) Cox Lasso Concordance - Har-
rell C-index
Calibration

NR (external 
validation 
study - original 
model 75/25)

Patients 
included 
if they 
had data 
for five 
predic-
tive mod-
els from 
original 
model

Martin 
(2022b)

Revision R (Version 3.6.1) Cox Lasso
Survival Random Forest
Generalized Additive Model (GAM)
Gradient Boosted Regression Model 
(GBM)

Calibration
Concordance

75/25 Multiple 
imputa-
tion

Johnson 
(2023)

All-cause 
re-operation

SciPy version 1.6.2 MLPClassifier
GaussianNB
LogisticRegression
KNeighborsClassifier
BaggingClassifier
RandomForestClassifier
AdaBoostClassifier
GradientBoostingClassifier
XGBClassifier

AUC
Calibration
AUPRC
F1
Recall
Accuracy
Precision

75/25 Multiple 
imputa-
tion

Lopez 
(2023)

ACLR post-op 
outcomes (revision 
included)

TensorFlow Python 
open-source coding 
platform (Google 
Brain, Alphabet Inc., 
Mountain View, CA)

Artificial Neural Network ML
Logistic Regression

AUC
Accuracy

80/20 Excluded

Ye (2022) Graft failure SPSS (Version 25.0; 
IBM Corp)

Logistic Regression
Gaussian Naïve Bayes
Random Forest
XGBoost
Isotonic XGBoost
Sigmoid XGBoost

AUC
Accuracy
F1

90/10 NR

Martin 
(2024)

Revision R (RStudio 
2022.07.1)

Cox Lasso Concordance - Har-
rell’s C-index
Calibration

75/25 NA

Jurgens-
meier 
(2023)

Secondary menis-
cus tear

R 4.1.2 using RStu-
dio version 1.4.1717 
(RStudio, Boston, 
MA)

SVM
Random Forest
XGBoost
Elastic Net

Discrimination 
- AUROC
Calibration
Brier score

0.632 boot-
strapping 
with 1000 
resampled 
datasets

Multiple 
imputa-
tion

Lu (2022) Secondary menis-
cus tear

R 4.1.2 using RStu-
dio version 1.2.5001 
(RStudio, Boston, 
MA).

Random Survival Forests C-statistic (AUROC) 
(Concordance)
Calibration
Brier Score

0.632 boot-
strapping 
with 1000 
resampled 
datasets

Multiple 
imputa-
tion

ML: machine learning, AUC: area under the curve, AUROC: area under the receiver operating curve, AUPRC: area under the precision-recall graph, ACLR: anterior 
cruciate ligament reconstruction, NR: not reported, MA: Massachusetts, CA: California, NR: not reported, NA: not applicable
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using the Random Survival Forest model, with key vari-
ables being time to return to sport, VAS pain score at 
injury, and hypermobility [27].

Calibration intercept and calibration slope
Two studies looked at calibration intercept and slope [25, 
27]. The best-performing models for calibration interval 
reported scores ranging from 0.0051 to 0.006. The ran-
dom survival forest model performed best when predict-
ing secondary meniscal injury after ACLR with a score of 
0.0051 (− 0.014 to 0.024) at a minimum two-year follow-
up [27]. The positive intercept indicates that included ML 
models tend to underestimate the risk; however, the con-
fidence interval suggests that the systemic underpredic-
tion is not statistically significant. The best-performing 
models for calibration slope reported slopes from 0.96 
to 0.97, with Random Survival Forest reporting the high-
est score (0.97) at a minimum two-year follow-up in a 
study predicting second meniscal injury [27]. XGBoost 

was similar with a slope of 0.957 (0.952–0.962) at a mean 
follow-up of 12.3 (6.6–17.6) years in a study predicting 
second meniscal injuries [25]. These values suggest that 
the models used tend to slightly overestimate risk, plac-
ing too much importance on predicting features. Overall, 
both studies revealed that the calibration intercept and 
slope were most accurate using the predictive features of 
time to return to sport and VAS pain score.

Calibration error
Calibration error was measured in four studies [28–31]. 
One study reported calibration errors for various mod-
els at one-, two-, and five-year marks [31]. At one year, 
the Cox Lasso, Random Survival Forest (RSF), and Gra-
dient Boosting (GB) models all had non-significant cali-
bration errors, whereas the Super Learner (SL) model 
demonstrated a calibration error of 8.67 (p = 0.034). At 
two years, the Cox Lasso model showed a significant cali-
bration error of 8.17 (p = 0.043). At five years, calibration 
errors were significant in all models: 11.37 (p = 0.01) for 
Cox Lasso, 9.27 (p = 0.026) for RSF, 11.07 (p = 0.011) for 
GB, and 11.82 (p = 0.008) for SL. One study reported sig-
nificant calibration errors for the Cox Lasso model, with 
errors of 22.24 (p < 0.001) at one year, 11.82 (p = 0.008) 
at two years, and 13.98 (p = 0.003) at five years [30]. One 
study found significant miscalibration at two years, with 
calibration errors of 11.35 (p = 0.01) for Cox Lasso, 11.66 
(p = 0.009) for Random Forest, and 11.19 (p = 0.011) for 
Generalized Additive Model (GAM). None of the mod-
els showed significant calibration errors at five years. 
Another study externally validated the original Norwe-
gian Algorithm using the STABILITY trial. They found 
that the subgroup (HT + LET patients coded as having 
BPTB grafts) with the highest concordance had a signifi-
cant calibration error of 11.7 (p < 0.01) at two years [28]. 
The original Norwegian Algorithm also showed a signifi-
cant calibration error of 11.3 (p = 0.01) at two years. Other 
subgroups analyzed showed evidence of miscalibration at 
one and two years, respectively (p < 0.01). Complete data 
from the model set can be seen in Table 3.

Multiple imputation data
Only one study reported data on multiple imputation 
analyses [31]. The concordance data from this study was 
not significantly different (p < 0.05) from the original 
set. The specific data can be seen in Table  4. However, 
the calibration data revealed an increased statistically 
significant calibration error in the multiple imputation 
cohort. At one year, two of the four models showed mis-
calibration (p > 0.05), and at two and five years, all models 
showed significant miscalibration (p < 0.05). The calibra-
tion error at one year ranged from 4.17 to 8.35. At two 
years, it ranged from 8.34 to 8.98; at five years, it ranged 
from 8.30 to 14.05.

Table 4  Multiple Imputation Data
Multiple 
Imputation 
Data Set
Author Concordance (95 CI) Calibration
Martin 
(2023)

1 year:
Cox Lasso 0.59 (0.56–0.61)
RSF: 0.66 (0.64–0.69)
GB: 0.68 (0.65–0.70)
SL: 0.67 (0.65–0.70)
2 year:
Cox Lasso 0.59 (0.56–0.61)
RSF: 0.67 (0.65–0.70)
GB: 0.67 (0.65–0.70)
SL: 0.67 (0.65–0.70)
5 year:
Cox Lasso 0.58 (0.56–0.61)
RSF: 0.67 (0.65–0.70)
GB: 0.67 (0.65–0.69)
SL: 0.67 (0.65–0.70)

1 year:
Cox Lasso 8.35, p = 0.039
RSF:4.17, p = 0.244
GB: 7.57, p = 0.056
SL: 7.99, p = 0.046
2 year:
Cox Lasso 8.81, p = 0.032
RSF: 8.96, p = 0.030
GB: 8.98, p = 0.030
SL: 8.34, p = 0.039
5 year:
Cox Lasso: 8.30, p = 0.040
RSF: 8.95, p = 0.030
GB: 11.53, p = 0.009
SL: 14.05, p = 0.003

Original 
Data Set
Martin 
(2023)

1 year:
Cox Lasso 0.59 (0.56–0.61)
RSF: 0.67 (0.64–0.69)
GB: 0.67 (0.65–0.70)
SL: 0.67 (0.65–0.69)
2 year:
Cox Lasso 0.58 (0.56–0.61)
RSF: 0.67 (0.64–0.69)
GB: 0.67 (0.64–0.69)
SL: 0.67 (0.64–0.69)
5 year:
Cox Lasso 0.58 (0.56–0.61)
RSF: 0.67 (0.65–0.69)
GB: 0.67 (0.64–0.69)
SL: 0.67 (0.64–0.69)

1 year:
Cox Lasso 7.19, n.s
RSF: 5.54, n.s
GB: 7.48, n.s
SL: 8.67, p = 0.034
2 year:
Cox Lasso 8.17, p = 0.043
RSF: 6.42, n.s
GB: 4.53, n.s
SL: 4.10, n.s
5 year:
Cox Lasso: 11.37, p = 0.01
RSF: 9.27, p = 0.026
GB: 11.07, p = 0.011
SL: 11.82, p = 0.008

KOOS: knee osteoarthritis and outcome score, CI: confidence interval, GB: 
gradient boosted regression model, RSF: random survival forest, SL: super 
learner, GAM: generalized additive model, n.s: not significant
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Factors predicting outcomes
Various features were considered most important pre-
dictive features (top three) by the assessed models. Years 
from injury to surgery were considered most important 
by four models (Random Forest, SL, GBM, GAM). Graft 
choice was considered most important by three models 
(Cox Lasso, GBM, GAM). Three models considered age 
at surgery most important (Random Forest, SL, GBM). 
Femur fixation was considered most important by three 
models (Cox Lasso, GBM, and GAM). A comprehensive 
list of the importance of the other features can be seen in 
Table 5.

Discussion
The primary finding of this systematic review was that 
existing machine learning models to predict secondary 
injury or surgery after ACLR are variable in terms of dis-
criminatory performance. Overall, Random Forest mod-
els were the most effective at predicting outcomes when 
using AUC, Brier, Calibration slopes and intercepts. Cox-
Lasso was the most effective model when using concor-
dance. Of the four studies reporting on AUC, values were 
relatively high, ranging from 0.77 to 0.997. However, of 
the four studies reporting on concordance, the mean 
values of all studies were closer to 0.5 than 1.0. Further-
more, there was variability when evaluating calibration. 
While the two studies reporting on Brier scores, calibra-
tion slope, and intercept reported minimal evidence of 
miscalibration in highest performing models, the four 
studies reporting on calibration error found significant 
evidence of miscalibration at either two and five-year 
follow-ups amongst 10 of 14 models assessed. Factors 
deemed important for secondary ACLR or injury (e.g. 
secondary meniscus injury, graft failure) were also vari-
able from model to model and study to study.

Machine learning has become incredibly popular in 
developing models to predict postoperative outcomes, 
and there is immense potential benefit in using these 
analyses to generate prediction models and calcula-
tors. However, this review demonstrates that there is 
still room for improvement in model performance. One 
recent study of 104 patients reported AUC values for 
several factors predictive of revision, ranging from 0.756 
to 0.813 [33]. These values fall in the range of the pre-
dictive models that reported on AUC included in this 
review. Some models in this review had AUCs over 0.95 
for predicting secondary meniscus injuries and revision, 
suggesting strong discriminatory power [25, 32]. How-
ever, it is notable that other studies providing C-statistics 
reported relatively low discrimination, with mean values 
all being under 0.75. The findings in this review align 
with a recent systematic review on ML models in various 
orthopaedic sub-specialties [4]. They found that in spine 
surgery, hip arthroscopy, total joint arthroplasty, and 

shoulder arthroplasty, the C-statistics ranged from 0.65 
to 0.92, 0.51–0.94, 0.63–0.89, and 0.70–0.95, respectively. 
While some models from this review had low C-statistics 
(e.g., closer to 0.5), others had values closer to 1 [4]. They 
also noted the lack of external validation and inconsistent 
adherence to predictive modeling guidelines. Therefore, 
it is possible that existing models investigating revision 
and secondary injury risk may be missing key important 
factors.

External validation studies are essential to assess 
the generalizability of machine learning models. One 
included study attempted to externally validate the revi-
sion prediction model from the original NKLR dataset 
using the Danish Knee Ligament Registry (DKLR) [30]. 
Concordance was similar between populations (DKLR: 
0.68; NKLR: 0.68–0.69); however, there was significant 
evidence of miscalibration at one, two, and five years 
when evaluating the DKLR group. Furthermore, com-
pared to the NKLR dataset, calibration error at one and 
five years was greater (4.89 versus 22.24 and 6.19 and 
13.98 respectively) [29]. The other external validation 
study assessing the STABILITY trial using the NKLR 
model reported a concordance of 0.71; however, it found 
significant evidence of miscalibration at two years. While 
two of six studies demonstrated strong calibration, these 
models have not been externally validated like that of the 
NKLR database. Having models demonstrate strong cali-
bration and concordance at the two-year mark is incred-
ibly important as one in 17 (6%) of ACLR patients will 
suffer a second ACL injury within two years of the index 
operation. Furthermore, rates of secondary ACL injury 
(e.g. ipsilateral or contralateral) at five, ten, and fifteen 
years have been reported to be 12%, 27%, and 31% [34]. 
Continuous evaluation of established and novel machine 
learning algorithms is incredibly important for prediction 
calculators to translate effectively into clinical practice.

Factors that were not included in the current review 
that may be important when considering secondary 
injury risk include concomitant lateral extra-articular 
tenodesis (LET) procedures, meniscus status, medial 
collateral ligament (MCL) injuries, and elevated poste-
rior tibial slope (PTS) (or effects of bone morphology). 
The STABILITY I study, a large multicenter randomized 
controlled trial (RCT) comparing ACLR with and with-
out LET, found that at 24 months postoperative, the LET 
group had a rupture rate of 4.1% compared to 11.2% in 
the non-LET group (p = 0.004) [35]. A secondary analy-
sis from this trial demonstrated that younger age, greater 
posterior tibial slope, high-grade knee laxity, and earlier 
return to sport all contributed to increased odds of rup-
ture. Larger hamstring autograft diameter was protective 
in reducing the odds of knee laxity in the form of asym-
metric pivot shift [13]. Several of these factors were not 
a part of the risk calculators developed from machine 
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Author (year) Factors predicting outcomes (in order of importance)
Martin (2023) Random forest:

age at surgery
age at injury
years from injury to surgery
KOOS QOL Cox model (lasso):
femur fix - susp/cort
graft qt/BQT
fix comb: interfer/susp
Graft other
Femur fix interf.
Grand boosted regression:
age at surgery
years from injury to surgery
graft 
age at injury 
KOOS QOL
Super learner:
age at surgery
years from injury to surgery KOOS QOL
Graft hamstring
age at surgery

Martin (2022a) NA - External validation study
Martin (2022b) Cox-Lasso:

graft choice
femoral fixation
KOOS QoL at time of surgery
Years from injury to surgery
Age at the time of surgery 
Random Forest:
age at time of injury
tibial fixation device 
fixation device combination
GAM:
Graft
Years from injury to surgery 
Femur fixation other 
KOOS QOL at surgery
GBM:
Age at surgery
Years from injury to surgery
Femur fixation
KOOS QOL at surgery

Lopez (2023) Surgery Setting
Operative Time
BMI
Age
Race

Johnson (2023) Systemic Inflammatory Disease
Distal Tear Location
Concomitant MCL Repair
VAS
Proximal Tear Location

Ye (2022) Medial Meniscal Resection
Participation In Competitive Sports
Posterior Tibial Slope
Graft Diameter Of PLB
Male Gender

Martin (2024) NA - External Validation Study

Table 5  Model performance
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learning algorithms. Specifically, some studies suggest 
that an increased PTS may place strain on the ACL, 
increasing the risk of failure [36]. Certain groups have 
proposed a threshold of 12 degrees, and have advocated 
for the use of slope-reducing osteotomies to reduce the 
PTS, especially in revision settings [37].

Machine learning analyses offer immense potential in 
terms of predictive capacity, however it is clear that there 
is much room for improvement, especially in the field of 
predicting revision or secondary knee injury after ACLR. 
With the risk of revision still being an issue, this review 
advocates for including factors such as the inclusion of 
LET procedures, graft diameter, meniscus status, and 
elevated posterior tibial slope in developing these mod-
els. Furthermore, future studies are encouraged to con-
tinue to attempt to externally validate existing and novel 
models to assess generalizability. Demonstrating strong 
concordance or AUC and little evidence of miscalibra-
tion both in the short-term and long-term is essential in 
order to implement risk-calculators in the clinical setting. 
There are a few limitations to this review. First, there were 
only two inclusions that served as external validation 
studies, which limit the generalizability of the reported 
findings. Second, only 55% of studies reported adhering 
to the TRIPOD guidelines for diagnostic studies, indicat-
ing high variability in the quality of individual datasets 
and reporting of results. This limitation is also noted in 
a recent systematic review on ML models in orthopaedic 
trauma, which reported a TRIPOD statement adherence 
of 62% [38], highlighting the need for better adherence to 
reporting guidelines. Third, there were limited amounts 
of comparisons with traditional multivariate logistic 
regression analyses, preventing the ability to make con-
clusive statements about the superiority or inferiority 
of machine learning models when the two methods are 
compared. Only two studies in this review included NN 
models, which is another source of weakness. NN mod-
elling would allow for the inclusion of image data and, 
thus, the creation of multimodal models that incorporate 
images and clinical variables. In this review, the NNs did 
not perform better than classical models, which may be 

because NNs require more resources to create and larger 
datasets to avoid overfitting. Ultimately, current ACLR 
prediction models mainly incorporate classical ML, as 
opposed to multimodel prediction models. Multicenter 
collaboration based on high-quality prospective data-
bases and registries, with agreement between investiga-
tors on feature inclusion, is needed for high-quality ML 
prediction algorithms. Only nine studies were included 
in this review, all of which were level IV evidence, pre-
venting the ability to perform a meta-analysis and pool 
machine learning performance statistics. The average 
quality of the included studies was fair, which limits the 
reliability of the findings and highlights the need for fur-
ther high-quality research in this domain. Finally, it is 
important to note that these predictive models are pre-
liminary and have not been assessed in a prospective 
cohort of patients. Future adequately powered longitudi-
nal studies testing these models are needed to ascertain 
their external validity.

Conclusion
Machine learning models designed to predict the risk of 
revision or secondary knee injury demonstrate variable 
discriminatory performance when evaluated with AUC 
or concordance metrics. Furthermore, there is variable 
calibration, with several models demonstrating evidence 
of miscalibration at two or five-year marks. A key limi-
tation of this study is the lack of external validation of 
existing models, which restricts their generalizability. 
Future efforts should focus on validating current mod-
els in addition to developing and integrating multimodal 
neural networks to improve predictive accuracy and reli-
ability. Further comparisons with traditional multivariate 
logistic regression analysis are also needed to validate the 
benefit of more advanced models.

Abbreviations
ACL	� Anterior cruciate ligament
ACLR	� Anterior cruciate ligament reconstruction
AI	� Artificial Intelligence
ML	� Machine Learning
NN	� Neural Networks

Author (year) Factors predicting outcomes (in order of importance)
Jurgensmeier (2023) Time to RTS

VAS Pain Score at injury
Time to surgery
Age at injury
Tear location

Lu (2022) Time To RTS
VAS At Injury Consultation
Hypermobility
Involvement In Noncontact Sports
African American Race

RTS: return to sport, VAS: visual analogue scale, PLB: posterolateral bundle, MCL: medial collateral ligament, BMI: body mass index, KOOS: knee osteoarthritis and 
outcome score, QOL: quality of life, GBM: gradient boosted regression model, GAM: generalized additive model, NA: not applicable

Table 5  (continued) 
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PRISMA	� Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses

MINORS	� methodological index for non-randomized studies
R-AMSTAR	� Revised assessment of multiple systematic reviews
AUC	� Area under the curve
OCEBM	� Oxford Centre for Evidence-Based Medicine
TRIPOD	� Transparent Reporting of a multivariable prediction model 

for Individual Prognosis or Diagnosis
KOOS QOL	� Knee injury and Osteoarthritis Outcome Score Quality of Life
GB	� Gradient Boosting
NKLR	� Norwegian Knee Ligament Registry
DKLR	� Danish Knee Ligament Registry
RSF	� Random Survival Forest
RF	� Random Forest
LR	� Logistic Regression
HT	� Hamstring Tendon
LET	� Lateral Extra-articular Tenodesis
BPTB	� Bone-Patellar Tendon-Bone Graft
ANN	� Artificial Neural Network
MLPClassifier	� Multi-Layer Perceptron Classifier
GAM	� Generalized Additive Model
GBM	� Gradient Boosted Regression Model
SL	� Super learner
VAS	� Visual Analog Scale
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