Skip to main content

Table 3 Model Complete Set

From: Machine learning models predicting risk of revision or secondary knee injury after anterior cruciate ligament reconstruction demonstrate variable discriminatory and accuracy performance: a systematic review

Author (year)

Feature Selection

AUC

Calibration Intercept

Calibration Slope

Brier Score

Concordance (95 CI)

Calibration Error

Martin (2023)

Age at surgery

Yrs. injury to surgery

KOOS QOL

Graft: hamstring

Age at injury

Femur fix: susp/cort.

Graft: QT/BQT

KOOS Sport

Men. injury: none

Activity: pivoting

Graft: other

Fix. comb: susp/interference

Surgery on same knee

KOOS All low

NR

NR

NR

NR

1 year:

Cox Lasso 0.59 (0.56–0.61)

RSF: 0.67 (0.64–0.69)

GB: 0.67 (0.65–0.70)

SL: 0.67 (0.65–0.69)

2 year:

Cox Lasso 0.58 (0.56–0.61)

RSF: 0.67 (0.64–0.69)

GB: 0.67 (0.64–0.69)

SL: 0.67 (0.64–0.69)

5 year:

Cox Lasso 0.58 (0.56–0.61)

RSF: 0.67 (0.65–0.69)

GB: 0.67 (0.64–0.69)

SL: 0.67 (0.64–0.69)

1 year:

Cox Lasso 7.19, n.s

RSF: 5.54, n.s

GB: 7.48, n.s

SL: 8.67, p = 0.034

2 year:

Cox Lasso 8.17, p = 0.043

RSF: 6.42, n.s

GB: 4.53, n.s

SL: 4.10, n.s

5 year:

Cox Lasso: 11.37, p = 0.01

RSF: 9.27, p = 0.026

GB: 11.07, p = 0.011

SL: 11.82, p = 0.008

Martin (2022a)

Patient age at primary surgery

KOOS QoL score at primary surgery

Graft choice

Femur fixation method

Years between injury and ACLR

NR

NR

NR

NR

1 year:

Cox Lasso: 0.678

2 years:

Cox Lasso: 0.676

5 years:

Cox Lasso : 0.678

1 year:

Cox Lasso: 22.24, p < 0.001

2 years:

Cox Lasso: 11.82, p = 0.008

5 years:

Cox Lasso : 13.98, p = 0.003

Martin (2022b)

Age at surgery

Fixation combination

Tibia fixation

Femur fixation

BMI

KOOS Sport at surgery

KOOS QOL at surgery

Years from injury to surgery

Age at injury

Hospital type

Further injury

Meniscus injury

Injured side

NR

NR

NR

NR

1 year

Cox Lasso: 0.686

Random Forest: 0.672

GAM 0.687

GBM 0.669

2 year

Cox Lasso 0.684

Random Forest: 0.670

GAM 0.685

GBM: 0.666

5 year:

Cox Lasso: 0.683

Random Forest: 0.670

GAM: 0.684

GBM: 0.665

1 year

Cox Lasso: 4.89, n.s

Random Forest: 3.12, n.s

GAM 4.79, n.s

GBM 4.98, n.s

2 year

Cox Lasso 11.35, p = 0.01

Random forest: 11.66, p = 0.009

GAM 11.19, p = 0.011

GBM: 3.76, n.s

5 year:

Cox Lasso: 6.19, n.s

Random Forest: 3.71, n.s

GAM: 6.98, n.s

GBM: 0.38, n.s

Johnson (2023)

Age

Sex

BMI

Occupation

Sport participation

Injury mechanism

Occurrence of reoperation after ACLR

MLPClassifier: AUC = 0.61

GaussianNB: AUC = 0.58

LogisticRegression: AUC = 0.70

KNeighborsClassifier: AUC = 0.68

BaggingClassifier: AUC = 0.75

RandomForestClassifier: AUC = 0.76

AdaBoostClassifier: AUC = 0.73

GradientBoostingClassifier: AUC = 0.75

XGBClassifier: AUC = 0.77

NR

NR

NR

NR

NR

Lopez (2023)

Sex

Race

BMI (Calculated From The Recorded Height And Weight)

American Society Of Anesthesiologists (ASA) Classification

History Of Smoking

Diabetes

Hypertension Requiring Medication

Wound Infection

Use Of Steroids For A Chronic Condition

Bleeding disorders were Abstracted

Perioperative Data Such As Anesthesia Type (General, Spinal, IV Sedation, Regional, Other)

Surgery Setting (Inpatient Vs Outpatient)

Operative Time (Prolonged Operative Time Defined As > 120 min)

ANN:

Reoperation: 0.842

ACLR-related Readmission: 0.872

Logistic Regression:

Reoperation: 0.601

ACLR-related Readmission: 0.606

NR

NR

NR

NR

NR

Ye (2022)

Age

Sex

BMI

Time From Injury To Surgery

Participation In Competitive Sports

Preoperative Lysholm And IKDC Scores

Posterior Tibial Slope

High-Grade Knee Laxity

Graft Diameters Of Anteromedial And Posterolateral Bundles

Medial And Lateral Meniscal Resection

Follow-Up Period

Meniscal Reinjury After ACLR

Graft Failure:

XGBoost (excellent): AUC = 0.944 (0.001), Accuracy = 0.986 (0.012)

Residual Laxity:

Random Forest (excellent): AUC = 0.920 (0.014), Accuracy = 0.914 (0.024)

NR

NR

NR

NR

NR

Martin (2024)

Patient Age At Primary Surgery

Knee Injury And Osteoarthritis Outcome Score Quality Of Life Subscale (KOOS-QOL) Score At Primary Surgery

Graft Choice

Femur Fixation Method

Time Between Injury And ACLR

NR

NR

NR

NR

1 year:

Original Norwegian Algorithm Performance: 0.686 (0.652–0.721)

STABILITY data:

HT = HT, HT + LET = BPTB: 0.713 (0.634–0.791)

HT = HT, HT + LET = Unknown: 0.609 (0.528–0.691)

All patients = HT: 0.674 (0.597–07.51)

2 year:

Original Norwegian Algorithm Performance: 0.684 (0.650–0.718)

STABILITY data:

HT = HT, HT + LET = BPTB: 0.713 (0.637–0.789)

HT = HT, HT + LET = Unknown = 0.608 (0.530–0.688)

All patients = HT: 0.673 (0.598–0.747)

1 year:

Original Norwegian Algorithm Performance: 4.9 n.s.

STABILITY data:

HT = HT, HT + LET = BPTB: 2.6 n.s.

HT = HT, HT + LET = Unknown: 10.6 p < 0.01

All patients = LT: 8.7 p < 0.01

2 year:

Original Norwegian Algorithm Performance: 11.3 p = 0.01

STABILITY data:

HT = HT, HT + LET = BPTB: 11.7 p < 0.01

HT = HT, HT + LET = Unknown: 8.9 p < 0.01

All patients = LT: 10.2 p < 0.01

Jurgensmeier (2023)

Age

Sex

Body mass index

Sport participation

Diagnosis of hypermobility or malalignment

Radiographic findings

Management

SVM: Apparent 0.782 (0.779–0.785), Internal Validation 0.738 (0.736–0.739)

Random Forest: Apparent 0.997 (0.994–0.999), Internal Validation 0.790 (0.785–0.795)

XGBoost: Apparent 0.814 (0.813–0.816), Internal Validation 0.758 (0.755–0.761)

Elastic Net: Apparent 0.673 (0.61–0.736), Internal Validation 0.646 (0.643–0.648)

SVM: 0.0161 (− 0.0173 − 0.0149)

Random Forest: 0.006 (0.005–0.0071)

XGBoost: 0.007 (0.0055–0.0077)

Elastic Net: 0.0165 (0.0152–0.0178)

SVM: 1.091 (1.086–1.096)

Random Forest: 0.9608 (0.9562–0.9654)

XGBoost: 0.9569 (0.9522–0.9616)

Elastic Net: 0.8926 (0.8861–0.8992)

SVM: 0.14 (0.13–0.15)

Random Forest: 0.10 (0.09–0.12)

XGBoost: 0.12 (0.11–0.14)

Elastic Net: 0.18 (0.17–0.20)

NR

NR

Lu (2022)

Age

Sex

Body mass index

Activity level

Occupation

Comorbid diagnosis

Radiographic findings

Management

ACLR: 0.80 (0.76–0.83)

Non-op: 0.66 (0.58–0.74)

ACLR: 0.0051 (− 0.014–0.024)

Non-op: 0.0048 (− 0.059–0.069)

ACLR: 0.97 (0.89–1.05)

Non-op: 0.97 (0.65–1.30)

ACLR: 0.106 (0.029–0.183

Non-op: 0.111 (0.034–0.188)

NR

NR

  1. ACLR: anterior cruciate ligament reconstruction, AUC: area under the curve, CI: confidence interval, KOOS: knee osteoarthritis and outcome score, QOL: quality of life, QT: quadriceps tendon, BQT: quadriceps tendon with a bone -block, GB: gradient boosted regression model, RSF: random survival forest, SVM: support vector machine, HT: hamstrings tendon, BPTB: bone-patellar tendon-bone, LET: lateral extra-articular tenodesis, SL: super learner, GAM: generalized additive model, NR: not reported, n.s: not significant, non-op: non-operative